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ABSTRACT 

Exercise is a possible modulator of intestinal microbiome
composition, since some investigations have shown that it is
associated with increased biodiversity and representation of
taxa with beneficial metabolic functions. Conversely, training
to exhaustion can be associated with dysbiosis of the intestin-
al microbiome, promoting inflammation and negative meta-
bolic consequences. Gut microbiota can, in turn, influence the
pathophysiology of several distant organs, including the
skeletal muscle. A gut-muscle axis may in fact regulate muscle
protein deposition and muscle function. In older individuals,
this axis may be involved in the pathogenesis of muscle wast-
ing disorders through multiple mechanisms, involving trans-
duction of pro-anabolic stimuli from dietary nutrients, modu-
lation of inflammation and insulin sensitivity. The immune
system plays a fundamental role in these processes, being
influenced by microbiome composition and at the same time
contributing to shape microbial communities.  In this review,
we summarize the most recent literature acquisitions in this
field, disentangling the complex relationships between exer-
cise, microbiome, immune system and skeletal muscle func-
tion and proposing an interpretative framework that will need
verification in future studies. 

Keywords: Gut microbiota; Sarcopenia; Inflammation; Exer-
cise immunology; Sport

1. Introduction
1.1 The physiology of human intestinal microbiome
The human intestinal microbiome is composed of a complex
ecosystem of more than 1014 bacteria, viruses, fungi, Protozoa
and Archea that live symbiotically with the host in the gut
lumen (45,61,82). Although there is increasing interest in the
role of Protozoa, fungi (the “mycome”) and viruses (the
“virome”), most of the existing research has been focused
mainly on bacteria, thanks to the availability of high-through-
put sequencing techniques of bacterial DNA (16S rRNA
microbial profiling, shotgun metagenomics) and fecal
metabolomics (52,77,93,94). 
The concentration of bacteria generally increases from the
small intestine to the colon, and different bacterial populations
are harbored in different tracts of the gastrointestinal system
(123). Although recent research has shown that the fecal
microbiota composition does not completely overlap with the
intestinal mucosa-associated microbiota (134), gut microbiota
composition has been determined from fecal samples in most
studies (45,61,82,123).  
It is generally agreed that the intestinal microbiome composi-
tion is shaped during early childhood, influenced by genetic
and environmental factors. These factors include geography,
delivery mode, breastfeeding, weaning, and exposure to envi-
ronmental bacteria (34,54,78). The maturation of the gut micro-
biota towards the adult-type is reached by the age of 3 years
(128). Interestingly, this process seems to exert a great influ-
ence on the development of the immune system, promoting
immunogenic tolerance towards symbionts and immune activa-
tion against pathogens (40,50,110). Conversely, alterations in
this process may induce a shift towards unappropriated type 2
immune responses, favoring the pathogenesis of allergy or
autoimmune diseases, according to some theories (71,74). 
In adulthood, the human gut microbiota composition remains
relatively stable over time, exhibiting resilience to disruptors,
such as stress, acute diseases, or antibiotic administration
(65). This means that, after a brief exposure to disruptors, the
microbiome faces a substantial, but transient, perturbation,
followed by partial or total recovery of previous taxonomic
composition (96). 
The healthy microbiome includes a limited number of highly
represented taxa, such as Bacteroides and Prevotella spp., and
a large number (up to 2000 identified to date) of minor players
with low representation but high metabolic activity (42,65). In
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healthy subjects, microbiota composition shows a certain
degree of inter-individual differences, that can be again
explained by genetic (13) and environmental factors (28),
such as the place of living, cultural habits, diet, diseases, med-
ications, and immune system function (99). Dietary factors,
and particularly carbohydrate and protein intake, are generally
considered as the main determinants of gut microbiota com-
position (5,76,132). 
In the older age, species richness and diversity of microbiome
decline, inter-individual variability increases, and resilience to
perturbations is reduced (24,86). Thus, the microbiome com-
position shifts towards a higher representation of opportunis-
tic pathogens, and is related to increasing prevalence of mal-
nutrition, frailty, disability and multimorbidity (49,112,114). 

1.2 The intestinal microbiome in human diseases
A large body of literature has demonstrated that the presence
of acute and chronic diseases, not limited only to the gastroin-
testinal system, is associated with alterations of the gut micro-
biota composition (67,99). These alterations, globally referred
to as “dysbiosis”, include reduced biodiversity, loss of com-
mensals with possible beneficial metabolic activities and
overgrowth of opportunistic pathogens (55,60,81). Dysbiosis
implies a disruption of the mutual equilibrium between gut
bacteria and host physiology (16). As a consequence, intestin-
al permeability increases, allowing bacteria or bacterial toxins
and metabolites to enter into the host circulation and promote
subclinical inflammation (64). Dysbiosis also reduces
bioavailability of nutrients, affecting the microbial metabo-
lism of several beneficial substances (73). 
As a result, gut microbiota may exert a great influence on the
functionality and pathophysiology of several organs anatomi-
cally distant from the gastrointestinal tract.  For example, gut
microbiota dysbiosis may be involved in the pathophysiology
of dementia (17,115), Parkinson’s disease (108) (“gut-brain
axis”), chronic kidney disease (95), nephrolithiasis (113)
(“gut-kidney axis”), asthma (73) (“gut-lung axis”) and even
osteoporosis (84) (“gut-bone axis”). 
However, most of these associations linking dysbiosis with
extra-intestinal diseases have been demonstrated in studies
with a cross-sectional design. Longitudinal studies, demon-
strating a causal relationship between microbiota composition
and disease onset and course, are still lacking (99). Thus, the
real clinical implications of gut microbiota dysbiosis and
interventions targeted at modifying gut microbiota composi-
tion are still poorly understood. 

2. Exercise and gut microbiota: the yin and yang
2.1 Beneficial effects of exercise on gut microbiota
Exercise is considered as one of the main environmental fac-
tors possibly influencing gut microbiota composition (99).
The complex relationship between exercise and microbiome,
and its possible implications for athletic performance have
already been reviewed elsewhere (10,27,87). However,
research in this field has made substantial improvements in
the last few years, and some recent acquisitions deserve to be
mentioned and discussed. 
Exercise is generally considered a positive modulator of gut
microbiota biodiversity. This concept has been supported by
investigations performed in animals (8,18,57,75), and then
confirmed in human studies. 

In a case-control study, microbial diversity was much higher
in a group of professional rugby players than in age-, sex- and
body size-matched controls not performing sports (26).
Recently, shotgun metagenomics analyses of the fecal sam-
ples from the same groups highlighted that athletes had a dif-
ferent microbiome composition also from a functional point
of view, with increased microbial representation of genes
involved in carbohydrate and amino acid metabolism, and
short-chain fatty acid (SCFA) production (7). In another
study, the average abundance of taxa involved in energy and
carbohydrate metabolism, including Prevotella and Methano-
brevibacter smithii, resulted significantly higher in profes-
sional than amateur cyclists, and was correlated with the fre-
quency of training (89). However, these studies could not
fully disentangle the contribution of exercise and diet in deter-
mining different microbiota compositions in different groups,
since participants followed a wide range of dietary regimens. 
The intensity of training is also important: light exercise pro-
grams induce only subtle modifications of gut microbiota
composition in sedentary subjects (31). Therefore, the find-
ings of studies performed in athletes should not automatically
be transferred to all subjects undertaking non-competitive
exercise. 
According to three different studies (37,38,127), fecal micro-
biota biodiversity is correlated with cardiorespiratory fitness
in adult subjects. However, in one of these studies, performed
in 71 premenopausal Finnish women, this relationship was
mediated by body composition (127). Another study, per-
formed in 19 active and 21 sedentary women aged ≤40 years
old, confirmed that the microbiome abundance of several bac-
terial taxa was significantly correlated with the body fat or
lean mass percentage (15). Thus, the possible association
between exercise and microbiota should be further investigat-
ed, carefully taking into account possible confounders, such
as dietary habits, nutrient intake, and parameters of body com-
position. 
The influence of body composition on microbiota was empha-
sized also by the findings of one intervention study, where
two groups of sedentary subjects, one lean and one obese,
underwent a 6-week structured exercise program, followed by
a 6-week washout period (2). After exercise training, both
lean and obese participants experienced a change in gut
microbiota composition, but the overall representation of
species with known anti-inflammatory properties and the
microbiome capacity of producing SCFA was higher in lean
subjects, highlighting a body mass index (BMI)-dependent
response to training. However, all the changes reversed
towards the baseline status after the washout period (2). Inter-
estingly, in exercised healthy young males undergoing a peri-
od of forced inactivity, cessation of exercise was associated
with changes in gastrointestinal physiology (i.e. reduction of
bowel movements and increased consistency of feces) before
alterations of gut microbiota composition and function could
be detected (103,104,105). These circumstances suggest that
the microbiome is resilient to acute changes in exercise habits,
and that maintenance of exercise is needed to induce long-
lasting modifications of intestinal microbial ecosystem. 
The modifications of intestinal microbiome composition
induced by exercise can exert beneficial effects on the whole
organism, modulating pathological processes. For example,
exercise-induced microbiota changes are able to attenuate the
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clinical course and outcome of experimental models of
myocardial infarction or chemically-induced colitis, especial-
ly by modulating the inflammatory response (1,63). The key
mediators in these processes may be SCFA, and particularly
butyrate, whose production by gut microbiota has been shown
to increase after exercise in humans (2). 

2.2 Negative effects of exercise on gut microbiota
Despite the findings of the studies discussed above, other
investigations have questioned the concept that the exercise-
induced changes in gut microbiota composition are always
favorable for the host physiology. Endurance high-intensity
exercise, especially if not proportioned to training level, may
in fact represent a huge stressor for the organism. These con-
ditions can induce ischemic events in the gut mucosa, associ-
ated with acute gastrointestinal symptoms including abdomi-
nal pain, nausea, and diarrhea (32). From a gut microbiota
perspective, these phenomena may be associated with
increased intestinal permeability allowing several bacteria and
their toxic products to enter systemic circulation and activate
systemic inflammation (51,97). A basic mediator in these
processes is represented by microbiota-derived lipopolysac-
charide (LPS) (97), exerting a wide range of pathological
actions on the host (4). 
Moreover, the high-intensity exercise-
induced dysfunction of the intestinal
mucosa may promote profound and rapid
changes in microbiota. For example, in a
group of soldiers, a 4-day military training
program of Arctic cross-country ski-march
resulted in deep changes in fecal microbio-
ta composition and functionality. Namely,
there was an expansion of a large number
of taxa, including opportunistic pathogens,
at the expense of dominant taxa, such as
Bacteroides, and taxa with known produc-
tion of anti-inflammatory mediators (51).
In amateur athletes, the fecal microbiome
functionality acutely changed after a half-
marathon race, exhibiting a pro-inflamma-
tory profile with a completely different
fecal metabolome (131). Similar changes
have also been demonstrated in animal
models (129). Interestingly, the administra-
tion of probiotics or prebiotics seems to
attenuate these unfavorable changes of gut
microbiota after exercise to exhaustion
(22,48,97), although the benefits are uncer-
tain in case of lower intensity of exercise
(118,119).  
In summary, regular exercise training
seems to be associated with higher biodi-
versity and beneficial functions of intestin-
al microbiome. The microbiota may thus
represent a mediator of the exercise-
induced health benefits, although diet and
body composition may play a relevant role
in this association. On the other side, there
are also some studies supporting that exer-
cise to exhaustion may be associated with
detrimental consequences for the microbio-

me. The effects of exercise on the intestinal microbiome may
thus depend on its intensity and timing, and future studies
should help to disentangle this relationship.  

3. Can the microbiota influence muscle pathophysiology?
The gut-muscle axis hypothesis in age-related sarcopenia

Recently, several research groups have independently hypoth-
esized that the gut microbiota composition may influence the
emergence of sarcopenia, i.e. the loss of muscle mass and
function occurring with aging (33,44,83,90,112,116). A study
performed on rat models of sarcopenia has actually demon-
strated that age-related muscle mass wasting is associated
with a distinct fecal microbiota composition, with reduced
representation of several taxa with purported anti-inflammato-
ry and pro-anabolic actions on the host tissues, including Clo-
stridium XIVa cluster, Butyricicoccus, Sutterella, Coprococ-
cus and Faecalibacterium (102). Sarcopenic rats also exhibit-
ed a different fecal microbiota functionality, with rearrange-
ments in the expression of bacterial genes involved in nutrient
biosynthesis and catabolism (102).
To date, no studies have investigated the composition and
functionality of fecal microbiota in older humans with sar-

Table 1: Overview of the possible pathophysiological mechanisms involved in the gut
microbiota-mediated regulation of skeletal muscle function (gut-muscle axis) and of the
corresponding effects in case of gut microbiota dysbiosis.
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copenia (116). However, there is some indirect evidence sup-
porting the hypothesis of a gut-muscle axis, in which the
intestinal microbiota composition can influence muscle mass
anabolism and functionality. 
The physio-pathological substrates of sarcopenia are repre-
sented by reduced muscle capillarity, reduced insulin sensitiv-
ity, and increased subclinical inflammation, resulting in
altered mitochondrial biogenesis and function, and altered
anabolic/catabolic balance of muscle protein synthesis
(14,69,70). From a clinical point of view, muscle mass loss
may also be favored by several conditions that are frequently
found in geriatric patients, including malnutrition, low dietary
protein intake, intestinal malabsorption, altered digestion and
subclinical cognitive deficits (58,83). 
In this context, the intestinal microbiota composition may
influence the onset of sarcopenia at multiple levels. The pres-
ence of gut microbiota dysbiosis is in fact associated with sev-
eral metabolic alterations, involving protein synthesis, release
of pro-anabolic mediators, inflammation and insulin sensitivi-
ty. All these elements can modulate skeletal muscle physiolo-
gy, as summarized in Table 1. 
First, a dysbiotic intestinal microbiota can reduce the
bioavailability of dietary proteins (102) and particularly of
some amino acids, like tryptophan, involved in modulation of
inflammation and promotion of muscle protein synthesis
(21,36,62). Gut bacteria are also involved in the synthesis of
many vitamins, including folate, vitamin B12 and riboflavin,
exerting several beneficial and pro-anabolic effects in skeletal
muscle cells, ranging from amino acid biosynthesis to oxida-
tive stress neutralization during exercise (59).
Moreover, a healthy intestinal microbiota can effectively
transform some dietary nutrients into metabolic mediators
that, once absorbed into systemic circulation, can exert bene-
ficial effects on inflammation, insulin sensitivity, anabolism,
and antioxidant capacity. Conversely, a dysbiotic microbiota
may lack these functions, with some negative consequences
on muscle health. Polyphenols, including resveratrol, and
ellagitannins contained in pomegranates and berries represent
the most relevant examples of nutrients that, after microbial
metabolism, enter systemic circulation and exert beneficial
effect for the muscle (98,107). Interestingly, endurance train-
ing seems to enhance the bioavailability of dietary polyphe-
nols, probably through its beneficial modulations of intestinal
microbiota (88).  
Moreover, the age-related alterations of gut microbiota com-
position (24), occurring independently from the level of exer-
cise training, can promote gut mucosa dysfunction, with
increased permeability. This phenomenon may result in the
systemic absorption of microbial byproducts and toxins,
including LPS (20). In skeletal muscle cells, circulating LPS
can contribute to activate Toll-Like Receptors (TLR) 4 and 5,
promoting NF-kB pathway activation, with reduced insulin
sensitivity, enhanced protein catabolism and inflammatory
cytokine production (72,106). In animal models, TLR4 activa-
tion determines muscle atrophy (35). In aging human beings,
TLR4 activation is associated with metabolic endotoxinemia,
decreased insulin sensitivity and reduced quadriceps muscle
strength and volume (41). 
But probably the most studied mechanism involved in gut
microbiota modulation of muscle function is the bacterial pro-
duction of metabolic mediators, including bile acids and

SCFA (20,25). A healthy gut microbiota can produce second-
ary bile acids, that are well known activators of farnesoid X
receptor stimulating myocyte anabolism (53). SCFA, and par-
ticularly butyrate, are generally synthetized by a large number
of gut bacteria, including Faecalibacterium, Butyricimonas,
and Succinivibrio, highly represented in healthy subjects but
with reduced abundance in older individuals (19). These
mediators have several beneficial metabolic activities, sum-
marized in Table 2, ultimately influencing skeletal muscle
protein deposition through modulation of the systemic anabol-
ic/catabolic balance (6,19). The administration of butyrate and
probiotics with similar functionality to animal models of mus-
cle wasting resulted in massive improvements in muscle mass
(120,125). Unfortunately, human studies on this topic are still
lacking to date. 
The metabolic action of gut microbiota was however con-
firmed in a study by Blanton and colleagues, where the trans-
plantation of the dysbiotic fecal microbiota from malnour-
ished African children to germ-free mice resulted in mouse
failure-to-thrive (12). 
Furthermore, the administration of rifaximin to mouse models
of hepatic encephalopathy surprisingly resulted in improved
skeletal muscle mass and function (56). Rifaximin is able to

Table 2: Summary of the main physiological functions of short-chain
fatty acids (butyrate, acetate, propionate) produced by the intestinal
microbiota (6,19,118,123). The most relevant functions possibly
involved in the gut-muscle axis are shown in italics.
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selectively kill pathobionts, favoring the expansion of bacteri-
al populations with purported beneficial activities, such as
Bifidobacteria or Lactobacilli (91). The observed effects on
mice may depend on its capacity to reduce the gut microbiota
dysbiosis associated with hepatic encephalopathy. 
In summary, the results of several pre-clinical studies support
the hypothesis that gut microbiota dysbiosis may be associat-
ed with muscle wasting, especially in age-related sarcopenia.
However, confirmation of this possible gut-muscle axis in
human studies is still lacking, and the clinical relevance of
these supposed mechanisms is still uncertain.  

4. Exercise and the gut-muscle axis
Although studies on humans are lacking, several preclinical
studies support the hypothesis that the intestinal microbiota
can modulate skeletal muscle physiology not only in age-
related sarcopenia, but in all ages and physiological states
(20,25). In this context, exercise may represent a strong mod-
ulator of gut microbiota composition. Thus, the gut-muscle
communication in human pathophysiology may be bidirec-
tional (25), with gut microbiota representing a “cross-road”
among environment, lifestyle, and skeletal muscle (112). 
In this scenario, some authors have hypothesized that many of
the well-known positive health effects of exercise may be
mediated by its beneficial modifications on the gut microbiota
(23,79,80). However, when there is an exercise overload,
these possible beneficial effects are overweighed by increased
intestinal permeability and oxidative stress, promoting
inflammation and a catabolic state that negatively impacts the
functionality of skeletal muscle (29). Moreover, the harmful

effects of inactivity on the muscle and vascular system may be
at least partly mediated by negative changes of the gut micro-
biota towards dysbiosis (23,109). 
In healthy subjects who regularly perform physical activity, a
homeostatic equilibrium between intestinal microbiota and
skeletal muscle may be present, with exercise promoting
healthy microbiota composition, and microbiota favoring
muscle health. This equilibrium may be disrupted by seden-
tary lifestyle or excessive exercise, resulting in dysbiosis of
the gut microbiota. Other factors promoting dysbiosis, such as
drugs or acute illnesses, may also be associated with reduced
muscle mass and function. In fact, dysbiosis influences gut
permeability, systemic inflammation, anabolism and nutrient
availability. All these mechanisms are involved in muscle
physiology and represent the substrates of the gut-muscle
axis, as depicted in Figure 1.
In summary, the gut-muscle axis may be two-way, with
microbiota influencing the muscle, and exercise contributing
to shape microbiota composition. The intensity and frequency
of exercise may have great importance in determining which
way of the axis is prevalent, and its physio-pathological con-
sequences. 

5. Immune system and the gut-muscle axis: virtuous and
vicious cycles

A healthy gut microbiota has a fundamental role in shaping
local and systemic immune response to gut bacteria through
the whole lifespan, favoring the maintenance of tolerance
towards antigens from commensals and activation against
antigens from pathogens (40). On the other side, gut micro-

Figure 1: Representation of the hypothetical conceptual framework connecting exercise, intestinal microbiome, inflammation, immune system
function and skeletal muscle pathophysiology at the current literature state of art. 
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biota dysbiosis favors the loss of immunolog-
ic tolerance to commensals, the impairment
of epithelial barrier function and an inbalance
in the activation of anti-inflammatory Treg
lymphocytes and pro-inflammatory Th17
lymphocytes (43,60). These phenomena may
contribute to the onset of several infectious,
inflammatory and autoimmune diseases,
including inflammatory bowel diseases, type
1 diabetes and multiple sclerosis, with gut
microbiota playing an active pathogenic role
(9). 
However, besides this “outside-in” relation-
ship, there is also an important “inside-out”
control of immune system over gut microbio-
ta (47,117). The immune system is in fact
able to influence the gut microbiota composi-
tion at multiple levels. Both innate and adap-
tive immunity are involved. The possible
mechanisms are synthetized in Table 3, and
include production of antimicrobial peptides
from intestinal cells, mucus secretion,
immunoglobulin A (IgA) activation, toll-like
receptor (TLR) activation, lymphocyte trans-
fer and differentiation, presence of invariant
natural killer T cells (iNKTC)
(47,60,68,101,130). The presence of specific
inbalances in each one of these pathways
may be associated with the emergence of gut
microbiota dysbiosis (47,68). 
In fact, human beings infected with the
Human Immunodeficiency Virus (HIV)
exhibit deep changes in the structure and
functionality of the intestinal microbiome,
with increased biodiversity due to over-
growth of opportunistic pathogens and
decreased representation of taxa with anti-
inflammatory properties (121,122,133). Sim-
ilar alterations of gut microbial community
structure have been detected also in patients
with IgA deficiency (39). These findings sup-
port the concept that the immune system
functionality influences gut microbiota com-
position. 
Conversely, the presence of specific func-
tionalities in the gut microbiome, related to
fatty acid metabolism, PPAR-signaling, lipid
biosynthesis and kynurenine pathway of
tryptophan metabolism, may enhance systemic immunity acti-
vation and promote control of HIV infection (124). Therefore,
a complex interplay between microbiome and immunity
exists, and the physio-pathological consequences depend on
the type of equilibrium reached (117).    
Some metabolic mediators, such as bile salts, may play a rele-
vant role in this equilibrium. In the gut lumen, bile salts can in
fact undergo metabolic transformations into compounds with
immunoregulatory and anti-inflammatory properties, particu-
larly on Kupffer cells and intrahepatic lymphocytes (100).
Bile salts have also the capacity of selecting specific subpopu-
lations of the gut microbiota that are able to metabolize them,
contributing to shape the intestinal microenvironment (100). 

Whatever the mediators involved, the equilibrium between
immune system and microbiome may be strongly influenced
by environmental factors. Positive modulators of gut micro-
biota composition, including regular exercise, may induce a
beneficial equilibrium with the immune system, resulting in a
virtuous cycle helping to maintain health (27,85). Conversely,
factors that disrupt gut microbiota composition, such as exer-
cise to exhaustion, illness and aging, may cause a perturbation
of the equilibrium between microbiome and immune system.
As a result, systemic inflammation is chronically activated,
sustaining further alterations of the microbiota towards dys-
biosis promoted by the altered immune system regulation
(30,46). So, a vicious circle arises. 

Table 3: Overview of the mechanisms involved in immune system control of gut micro-
biota composition (47,60,68,100,128). 

Table 4: Summary of the main features of aging immune system involved in increased
gut mucosa permeability and in age-related gut microbiota dysbiosis (11,66,124).
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These postulated mechanisms are highlighted in Figure 1.  
A healthy gut microbiota, and a positive interaction with the
immune system, may be crucial for the gut-muscle axis, and
may influence the maintenance of muscle mass and function-
ality, especially in exercised subjects (29). Conversely, dys-
biosis resulting from a negative interaction with the immune
system may influence muscle wasting disorders, particularly
during aging (112).  
Age-related gut microbiota dysbiosis is associated with
increased gut mucosa permeability in both animal models and
humans (92,111). The reduced intestinal epithelial barrier
function is accompanied by several alterations in immune sys-
tem, involving both innate and acquired immunity (Table 4)
(11,66,126). These alterations ultimately promote local and
systemic inflammation, with overproduction of the pro-
inflammatory cytokines TNF-α, IL-1β and IL-6 (66,126).
Inflammation negatively impacts the gut-muscle axis and is
involved in the pathogenesis of several age-related conditions,
including not only sarcopenia and frailty (126), but even can-
cer (11). Moreover, IL-1β further stimulates intestinal epithe-
lial tight junction permeability and promotes local dysbiosis
(3), in a vicious cycle supporting skeletal muscle wasting and
loss of function. 
In summary, the relationship between intestinal microbiome
and immunity may be two-way, and the resulting equilibrium
may exert important functions on the functionality of the gut-
muscle axis and on muscle health. More research is however
needed to disentangle these complex relationships, and to
reveal their actual relevance from a clinical perspective. 

6. Conclusions
The relationship between exercise, immune system, gut
microbiota, and skeletal muscle pathophysiology is very com-
plex and not completely elucidated at the current state of the
art. In Figure 1, we present a possible interpretative frame-
work, showing that the gut microbiota is at the cross-road
between environmental stimuli and host physiology, undergo-
ing a continuous interplay with the immune system and the
skeletal muscle. 
Future studies should clarify whether gut microbiota dysbiosis
is pathophysiologically associated with muscle wasting disor-
ders, and if exercise may positively influence this putative
gut-muscle axis. Furthermore, the influence of the microbio-
me-immune system interplay on skeletal muscle mass and
functionality should be investigated in both experimental
models and human beings. 
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