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ABSTRACT

Feelings of fatigue not only occur in chronic and acute dis-
ease states, but also during prolonged strenuous exercise as a
symptom of exhaustion. The underlying mechanisms of fatigue
in diseases seem to rely on neuroinflammatory pathways.
These pathways are interesting to understand exercise-
induced fatigue regarding immune system to brain signaling
and effects of cerebral cytokines. Activation of the immune
system incurs a high-energy cost, also in the brain. In conse-
quence immune cells have high energetic priority over other
tissues, such as neurons. A neuronal inactivation and corre-
sponding changes in neurotransmission can also be induced
by end products of ATP metabolism and elicit feelings of
fatigue in diseases and after intensive and prolonged exercise
bouts. Since there are no existing models of exercise-induced
fatigue that specifically address interactions between neu-
roimmunologic mechanisms and neuroenergetics, this article
is combining scientific evidence across a broad range of disci-
plines in order to propose an inflammation- and energy-based
model for exercise-induced fatigue.

Keywords: exercise-induced fatigue, neuroinflammation,
neuroenergetics, adenosine, cytokines.

1. Introduction

To study exercise-induced fatigue for many years, priority was
given to muscles over the brain as a regulatory factor. Already in
1915, Alessandro Mosso postulated that both, the will (central
component) and the muscular work (peripheral component), have
to be taken into account when considering the resulting impair-
ment of exercise performance. Mosso distinguished the diminu-
tion of the muscular force and the sensation of fatigue (1). As a
result of the upcoming knowledge of the bi- and multidirectional-
ity of biological systems, the paradigm shifted to the inclusion of
cerebral processes in order to guarantee homeostasis in all sys-
tems during exercise by modulating athlete´s behavior (2,3).

Since proinflammatory cytokines induce changes in behavior
during acute infection by provoking feelings of fatigue (4,5),
it is reasonable that the remarkable rise in circulating proin-
flammatory signals during prolonged strenuous exercise (6)
may also contribute to exercise-induced fatigue. In this
regard, the neuromodulatory properties of myogenic/neuronal
Interleukin 6 (IL-6) and cerebral immune cell-derived Inter-
leukin 1 (IL-1) have recently been discussed as major factors
in exercise-induced fatigue (7,8). 
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According to the selfish immune system theory (9), high syn-
thesis rates of cytokines indicate high energy turnover of
immune cells and with that, higher energetic needs of those.
In the case of an increasing brain macrophage activity, energy
substrates may be shifted away from neurons to these immune
cells to maintain their activity (8,10). Because decreasing neu-
ronal activity seems to induce feelings of fatigue also during
exercise, a compromised energy provision to neurons due to
increasing brain immune cell activity could account for the
decline in exercise performance (11,12). 

The initially increasing neuronal and glial energy turnover
during prolonged strenuous exercise (11,12) may favor the
generation of the nucleoside adenosine (ADO) (13), which
negatively mediates exercise performance in a concentration-
dependent manner by modulating dopamine neurotransmis-
sion in the basal ganglia (14,15).

Here, we propose that (neuro-)immunological mechanisms
influence neuroenergetics, with both proinflammatory signals
and end products of energy turnover inducing feelings of
fatigue during prolonged strenuous exercise and ultimately
provoking exercise termination.

2. Peripheral and central fatigue

Already in the late nineteenth century, the physiologist Angelo
Mosso postulated that “muscular fatigue also is at bottom an
exhaustion of the nervous system” (2). In the context of exer-
cise-induced fatigue, central or supraspinal fatigue appears to
originate in regions of the brain and is defined as the inability
of the CNS to drive motor neurons efficiently during the per-
formance of intermittent or prolonged aerobic exercise (16),
whereas peripheral or muscle fatigue is the result of biochemi-
cal changes in the exercising limb muscles (17).

2.1 Lactate accumulation
According to the lactate theory of exercise fatigue, the exer-
cising muscles stop working due to a massive intracellular
lactate accumulation as a consequence of an insufficient sup-
ply of oxygen and the upregulation of the muscle cell´s anaer-
obic metabolism (17). 

However recent findings challenge the correctness of the lac-
tate theory (Robergs, 2004) and emphasize the significance of
lactate as energy substrate in other metabolic processes
(18,19). Via intracellular monocarboxylate transport proteins,
lactate is used as an additional energy substrate both by con-
tracting and adjacent inactive muscle fibers. During strenuous
exercise, a reciprocal brain-muscle energy exchange occurs in
which the brain favors muscle-derived lactate in order to pro-
vide enough circulating glucose to type-2 muscle fibers as its
primary energy substrate (20-22).

The energetic capacity of exercising muscles does not
decrease significantly to promote peripheral fatigue, since
muscles are still capable to generate power at exhaustion (23).
Because neither lactate accumulation in exercising muscles
nor associated muscle acidification cause peripheral fatigue
(23), these findings underline the assumption of exercise ter-
mination forced by central mechanisms. 

2.2 Neurotransmission
Neurotransmission of monoamines plays a crucial role in
exercise-induced fatigue. The central fatigue hypothesis pos-
tulated by Newsholme et al. (24) states that exercise-induced
synthesis of cerebral serotonin (5-HT) provokes the onset of
fatigue symptoms. Since 5-HT can not cross the blood-brain
barrier (BBB), brain cells rely on the uptake of tryptophan as
its precursor. Animal studies (25) have shown that tryptophan
injections in the cerebral ventricle of rats were associated with
the onset of exercise-induced fatigue, while inhibition of the
conversion of tryptophan to 5-HT could improve running time
to fatigue. However, others have proven a reduction in plasma
tryptophan in humans after exhaustive aerobic exercise (26),
which seems contradictory to the aforementioned findings.
Strasser et al. conclude that there is limited availability of
tryptophan for 5-HT biosynthesis in the brain after the enzy-
matic conversion to kynurenine in the periphery. 

Recent findings provide evidence that dopaminergic neuro-
transmission in striatopallidal neurons increases exercise per-
formance by maintaining motivation and motor regulation
(27,28). A blockage of central dopaminergic D1/D2 receptors
results in a significant decrease in endurance performance and
maximal oxygen uptake (29).

2.3 Cytokines
Many systemic inflammatory and neuroinflammatory disor-
ders, i.e. chronic fatigue syndrome (CFS), depression or mul-
tiple sclerosis, are frequently accompanied by high amounts
of circulating cytokines and a persistent state of mental and
physical fatigue (30). Neuroimaging studies have suggested
the presence of neuroinflammation in the midbrain of CFS
patients (31). Furthermore, CFS patients achieve volitional
exhaustion significantly faster and consistently report a higher
rate of perceived exertion during an exercise task, assuming
that CFS, in part, is mediated centrally (32). Chronic fatigue
in athletes suffering from overtraining/athlete burnout may
also result from circulating proinflammatory cytokines and a
neuroinflammatory state (33,34).

Vargas & Marino (35) proposed a neuroinflammatory model
for acute fatigue during exercise. The authors suppose a
potential interaction between cytokine release during pro-
longed strenuous exercise and their effects on afferent feed-
back signalling to the brain that might lead to feelings of
fatigue. In particular, the extraordinary increase in plasma IL-
6 concentration is proposed to be a major fatigue-inducing
factor due to its receptor-mediated signal transduction in neu-
ronal afferents and circumventricular organs (CVO). 

Already in 2000, the influence of muscle-derived IL-6 was
considered to play an important role in the development of cen-
tral fatigue (36). Subcutaneous administration of a low dose of
recombinant IL-6 to athletes increase their sensation of fatigue
at rest and significantly impairs athletic performance during a
10-km running time trial (37). Because of its autocrine,
paracrine or endocrine effects, muscle-derived IL-6 may also
function as an energy sensor and a hormone-like molecule that
increases energy substrate mobilization (38-40), possibly by an
intensity-dependent upregulation of cortisol (41,42). Therefore,
high IL-6 levels could represent the need for energy substrates.
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After an eccentric exercise bout, the concentration of IL-1
increases significantly in rat brain regions responsible for
movement, coordination, motivation, perception of effort, and
pain. Its levels correlate significantly with both post-exercise
delayed recovery and decreased performance in a subsequent
task (43). Further, intracerebroventricular injection of IL-1
significantly decreased wheel running activity in uphill run-
ning mice, whereas IL-1ra improved wheel running in down-
hill running mice (44). Another study identified perivascular
and meningeal macrophages as the major producer of brain
IL-1 during exercise (8). 

There is vast evidence that microglia, another mononuclear
phagocytic cell type in the CNS and the main actor in neuroin-
flammation, synthesize both IL-1 and TNF in high amounts
after activation. Furthermore, the decrease in symptoms of
depression and fatigue is accompanied by a reduced TNF
secretion in the CNS through modulation of neuroinflamma-
tion (31,45,46).

3. Systemic inflammatory response during exercise –  
muscle damage, leukocytosis and endotoxemia

Via the production of IL-6 and reactive oxygen species
(ROS), both exercise-induced muscle damage (47,48) and the
intensity-dependent rise in circulating T-lymphocytes and
neutrophils (49,50) significantly contribute to the exercise-
induced systemic inflammation (51,52). The rise in serum
neopterin during exhaustive aerobic exercise suggests an
increased activation of peripheral macrophages (26). Howev-
er, results from Ostrowski et al. (53) reveal an increase of the
anti-inflammatory cytokines IL-10, IL-1 receptor antagonist
and soluble TNF receptors during and after strenuous exer-
cise, possibly due to the massive increase in IL-6 (41,54).

Lymphocyte-derived extracellular heat shock proteins are
known to increase during high-load exercise and are further
proposed to promote fatigue sensation via marked influence
on motor neurons and deeper structures of the CNS (55).
These molecules also promote inflammation by acting as a
danger signal from the immune system. Bårdsen et al. (56)
suggest that the significant increase in extracellular heat shock
proteins in CFS patients might signal to the brain and con-
tribute to the state of fatigue. 

The observation that prolonged strenuous exercise favors a sys-
temic inflammatory state was discussed by John Marshall,
assuming that the exercise-induced increase in intestinal perme-
ability and lipopolysaccharide (LPS)-induced endotoxemia may
be the underlying cause (57). LPS is a gut-derived proinflamma-
tory fragment of the outer membrane of gram-negative bacteria
and a pathogen-associated molecular pattern (PAMP). Pals et al.
(58) showed that the degree of the intestinal permeability
depends mainly on exercise intensity and correlates with body
core temperature. In fact, human studies show that the severity
of endotoxemia seems highly dependent on the environmental
temperature (59,60), but also on the composition of the gut
microbiota (61). In this regard, the supplementation of probiotics
over a period of 4 weeks displays a tendency to decreasing intes-
tinal permeability and reducing LPS in the bloodstream (62).

After an ultramarathon, 81% of the participants showed plas-
ma LPS levels > 0.1 ng/ml (endotoxic), while 2% even had a
plasma concentration of 1 ng/ml (potentially lethal) despite
moderate environmental temperatures (20,3°C-22,3°C) (63).
Both exercise-induced functional splanchnic hypoperfusion
and translocation of LPS are damaging the protein-barrier
complex between enterocyte membranes via temperature-
dependent and immune-mediated mechanisms (64-66). This
contributes to an endotoxic state.

4. Communication interfaces between periphery and 
central nervous system

A systemic inflammatory response has been shown to affect
the activity of immune cells in the brain. The growing impor-
tance of the bidirectionality between the periphery and the
central nervous system (CNS) and the impact of neuroim-
munomodulatory mechanisms (67) puts the interplay of
endocrine, neuronal and immunological mechanisms in the
forefront of exercise regulation (3). Due to acute or chronic
immune stressors, dysregulation at periphery-CNS interfaces,
i.e. the BBB, CVO, and afferent nerve fibres (68), is associat-
ed with pathological conditions in which fatigue is a common
feature (69). As prolonged strenuous exercise represents a
huge physiological stressor accompanied by immune activa-
tion, interface-specific cells could get regulated in order to
induce systemic adaption and maintain homeostasis in all sys-
tems during exercise (2,70).

Some cytokines use specific mechanisms to access the brain
parenchyma by bypassing its saturable transport mechanisms
(71). The serum level of the S100 calcium-binding protein
(S100) which provides information about the severity of the
BBB´s permeability, increases during strenuous exercise (72).
Both duration and intensity of an exercise bout (73) and
game-related activities or events (74) seem to determine the
rise in S100 plasma concentration. Furthermore, S100 is the
most frequently assessed biomarker in studies investigating
sport-related concussion which is known to induce BBB dis-
ruption (75). According to the severity of concussion, the
post-injury neuroinflammatory state promotes metabolic dys-
function and neuronal impairment (76), often followed by per-
sistent feelings of fatigue, without regard of traumatic brain
injury severity (77,78). A correlation between the onset of
exercise-induced fatigue and the number or magnitude of
impacts to the head is possible, but experimental data are
lacking.

Although LPS is able to alter transport rates for many peptides
across the BBB (79), LPS acts on receptors outside the BBB
rather than directly on BBB´s structures to modulate its
integrity (80,81). Peripheral administration of subseptic doses
of LPS initiates the synthesis of IL-1 and tumor necrosis fac-
tor-alpha (TNF) messenger RNA at the CVO, but not at the
BBB (82). Since plasma LPS concentration can rise signifi-
cantly during prolonged strenuous exercise (63), CVO could
play a decisive role in neuroimmunological modulation.
Recent studies show that communication between peripheral
immune cells and brain structures predominantly occurs at the
sensory CVO (83). Their unique structure enables them to
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monitor and transmit blood- and cerebrospinal fluid-derived
information from circulating substances that do not readily
cross the BBB. 

During a systemic inflammatory response, concentrations of
the IL-6 receptor and the IL-6 signal transducer glycoprotein
130 are highest in the sensory CVO. The synthesis rate of
both increase significantly in accordance with circulating IL-6
(84), thereby enforcing its neuroimmunomodulatory proper-
ties. The huge rise in serum IL-6 during prolonged strenuous
exercise may increase levels of soluble IL-6 receptor and gly-
coprotein 130 in the sensory CVO. A systemic inflammatory
response upregulates IL-1 receptor and TLR (Toll-like recep-
tor) 4 in the sensory CVO as well, both changing the activity
of neurons and inducing gene expression of proinflammatory
cytokines (85-87). The IL-1 receptor and TLR4 is expressed
by microglia and by brain macrophages. After a single sys-
temic administration of LPS, microglia show increased prolif-
eration in the sensory CVO compared with other regions of
the brain (88), presumably compensating for the lack of a pro-
tecting BBB.

Receptors for cytokines and LPS are also expressed at the ter-
minal nerve endings of the vagus nerve, suggesting a crucial
role in immunomodulation and sickness behavior via sig-
nalling from nucleus tractus solitarius to brainstem, hypothal-
amus and higher brain centers (89-91). Once these receptors
become activated, the vagus nerve is stimulated in a dose-
dependent relationship (92,93). 

Since the afferent activity of the hepatic vagus nerve seems to
contribute to the orchestration of the metabolic and hormonal
responses to exercise, cytokine-induced stimulation of the
vagus nerve could influence exercise performance in a dose-
dependent manner (94). Similarly, activation of glial cells in
the spinal cords of mice during eccentric exercise alters their
gene expression due to the emerging skeletal muscle inflam-
mation (95), provoking exercise-induced muscle hyperalgesia
by IL-6 signalling on primary afferent nociceptors (96).
Enhanced glial cytokine synthesis in the spinal cord is also
shown during acute and chronic pain states and in inflamma-
tory muscle disease (97,98) with fatigue and pain pathways
being quite similar regarding cytokine signalling (99).

5. Neuroinflammation and fatigue

Since the perception of fatigue as a hallmark of sickness
behavior seems to be cytokine-driven (4,5), fatigue is wide-
spread in people suffering from neurodegenerative and chron-
ic inflammatory diseases (30). Both direct and indirect meas-
urement methods revealed an increased intestinal permeabili-
ty, higher circulating LPS levels and a region-specific rise in
neuroinflammation (100-104). Therefore, a causal relation-
ship between intestinal permeability, neuroinflammation and
the perception of fatigue is reasonable. 

Rats exposed to either an immunological or a physical stressor
show symptoms of sickness behavior in a time-dependent
manner. However, when IL-1 receptor antagonist is injected
intracerebroventricularly prior to the physical stress exposure,

symptoms do not appear (105). Indeed, IL-1 and IL-6 may
function as immunological correlates of human sickness
behavior. During infection, levels of IL-1 and IL-6 sponta-
neously released from peripheral blood mononuclear cell cul-
tures were consistently correlated with reported manifesta-
tions of acute sickness behavior including fever, malaise,
pain, fatigue, mood and poor concentration (106).

An animal study showed that the administration of anti-
inflammatory omega-3 fatty acids significantly inhibit LPS-
induced neuroinflammation in the prefrontal cortex, hip-
pocampus and hypothalamus and reverses depression-like
behavior (46). Moreover, supplementation of the omega-3
fatty acid eicosapentaenoic acid in the course of 16 weeks
promotes symptom remission and structural brain changes in
patients with CFS (107).

6. Energetic regulation – is there a selfish immune system
in the brain? 

From an ecoimmunological point of view, an acute inflamma-
tory response is metabolically extremely costly according to
its allostatic load (108). As allostasis is an evolutionarily con-
served and energy-intensive response to resume local home-
ostasis, the allostatic load indicates the severity of the homeo-
static disruption (109). Based on in vitro O2-consumption
rates (24), activated macrophages turn over ATP ten times
faster per minute compared to the inactivated state. The
favored aerobic glycolysis of activated immune cells makes
glucose their primary energy substrate (110), using strategies
to redistribute energy to themselves to keep their metabolism
running (9). New insights indicate that these characteristics
can also be observed in microglia depending on their polariza-
tion state (10,88,111).

Assuming that brain macrophages become overactive during
prolonged strenuous exercise (8), their energy needs could
reduce energy provision to neurons, thereby promoting the
occurrence of fatigue symptoms. In patients with tuberculous
meningitis, the infection with Mycobacterium tuberculosis
represents a huge allostatic load indicated (112). The infection
is accompanied by microglial activation and the allocation of
astrocytic lactate to microglia via astrocyte-microglia lactate
shuttles, thereby providing an adequate energy supply activat-
ed microglia. As a result, the allocation of lactate to neurons
decreases significantly, which leads to neuron inactivation
(10). Similarly, when lactate shuttling from astrocytes to neu-
rons decreases during strenuous exercise, neurons are not able
to maintain their metabolism (11,113). In consequence, exer-
cise performance declines.

Acute bouts of strenuous exercise mobilize highly differenti-
ated T-cells from peripheral tissues into the blood stream
(49,114) referring to exercise-induced leukocyte demargina-
tion (115). Since a high differentiation level is associated with
decreased mitochondrial content and function, these immune
cells mainly rely on the glucose-consuming anaerobic metab-
olism (116). The trafficking rate depends on the aerobic fit-
ness level with untrained people showing higher redistribution
of these energy consuming immune cells into the blood
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stream (117,118), potentially contributing to the earlier onset
of exercise-induced fatigue in this population.

A high energy turnover induces ATP breakdown to ADO.
ADO is secreted by ATP-depleted tissues or is extracellularly
generated from ATP, which is released from metabolically
stressed cells (119). In a Drosophila infection model, ADO
induces energy reallocation by enhancing uptake of glucose in
immune cells at the expense of other glucose-dependent tis-
sues, including the brain (120). Consequently, ADO is consid-
ered being a signalling molecule whose effects could increase
fatigue in relation to the energetic demand of activated
immune cells (121). It is important to note that ADO regulato-
ry and signaling network in Drosophila is similar to mam-
malian systems (121). Since high levels of ADO accumulate
in the brain after prolonged strenuous exercise (13), it is rea-
sonable that there could be similar mechanisms of action. 

7. Purinergic regulation of neuroinflammation and neuro-
transmission in the basal ganglia

New insights into mechanisms of action of purines in the CNS
with respect to neuroinflammatory processes and behavioral
regulation emphasize their neuromodulatory effects, although
most results are from animal studies (122). A rise in extracel-
lular ADO favors neuroinflammatory signalling through
upregulation of the high-affinity A2A adenosine receptor (123).
As high amounts of extracellular ATP are considered to be
evolutionarily conserved danger-associated molecular pattern
(DAMP) (124), it initiates inflammation via stimulation of the
TLR4-dependant cytosolic inflammasome in microglia (125).
While both ADO and ATP are able to enhance the production
of IL-1 (126), IL-1 in turn promotes ATP and ADO release
from neurons (127). Experimental data in mice suggest a
potentiation of nitric oxide release by activated microglia after
interacting with the A2A adenosine receptor, thereby increasing
ROS and reactive nitrogen species (RNS) production (128-
130). In addition, the stimulation of the ATP-purinoceptors
P2X7R and P2X4R favors synthesis of IL-6 and TNF, what
further promotes neuroinflammation (131). 

ADO directly influences behavior by decreasing dopaminer-
gic neurotransmission through conformational changes of
D2R binding sites at a shared A2A/D2- and A2A/D2/mGlu5-
receptor complex on rat striatopallidal GABA neurons
(15,132,133). As dopamine is an important neurotransmitter
in exercise regulation, ADO may negatively influence exer-
cise performance in rats (134). In contrast, the ADO antago-
nist caffeine delays run time to fatigue in rats by 52%, pre-
sumably by increasing dopamine release through an antago-
nism at the A1 and A2A adenosine receptors in the striatum, the
nucleus accumbens and the nucleus caudatus (135) or the pre-
optic area and the anterior hypothalamus (136). However, no
effect of caffeine on exercise performance was seen in
humans exercising in high ambient temperature (137).

8. Neuroinflammation-induced energy reallocation during
exercise – a new paradigm?

Not only exercise-induced muscle damage, endotoxemia and
leukocytosis contribute to the systemic inflammatory
response in exhausted athletes, but also the release of
ROS/RNS and, to a lower extent, cytokine-dependent apopto-
sis of leukocytes and neutrophils immediately after prolonged
strenuous exercise (138,139). Although circulating lympho-
cytic subpopulations contain a high antioxidant capacity
(140), it is conceivable that leukocytes whose capacity has
already been exhausted during prolonged strenuous exercise
could undergo apoptosis even before exercise termination.
Cells that are not immediately phagocytosed after apoptosis
become “leaky” (secondary necrosis). They release DAMPs
and stimulate a host response by secreting more proinflamma-
tory signals (141).

Exercise-induced rise in serum LPS concentration may induce
changes at the BBB and favors microglia proliferation at the
CVO, thereby inducing neuroinflammation (80,88). If gut-
derived LPS accumulates in the liver by overwhelming the
capability of the liver´s reticulo-endothelial system (63), the
resulting stimulation of Kupffer cells may force the secretion
of cytokines. Binding of LPS and IL-1 to receptors on termi-
nal nerve endings of the hepatic vagus nerve may activate
microglia (69,142).

There is some evidence that IL-6 acts as a major factor and is
contributing to exercise-induced fatigue (7,36,37). Results
from prolonged (marathon) and highly prolonged (spar-
tathlon) endurance exercise show a 128-fold and respectively
8000-fold increase in IL-6 plasma levels, peaking at exercise
termination and rapidly normalizing afterwards (53,143). This
outcome may support the fatigue-inducing character of IL-6
instead of being a proinflammatory cytokine in the context of
exercise. However, as energy availability declines drastically
due to the physical strain in such events, muscle-derived IL-6
may also work in its hormone-like fashion by increasing ener-
gy substrate mobilization (38-40).

Since increased neuronal metabolism alters microglia func-
tioning, neurons can be regarded as key immune modulators
in the brain (144). As neuronal metabolism and extracellular
levels of ‘neuron-microglia signalling factors’ rise, they func-
tion as "On" signals (Fig. 1: right box, dark blue arrows) by
recruiting microglia which then support the neuron´s metabo-
lism (Fig. 1: microglia-astrocyte-neuron lactate shuttles =
right box, purple arrow). Already before, astrocytes begin to
serve the energy needs of the neurons through cellular lactate
transfer (Fig. 1: astrocyte-neuron lactate shuttles = light blue
arrow). 

The rise in extracellular ADO due to the high glial and neu-
ronal ATP turnover may increase astrocyte proliferation and
activation (145). The significant increase in brain ADO during
strenuous exercise (13), could, therefore, aim to enhance
astrocytic lactate production to supply the cells in need (Fig.
1). Furthermore, cerebral ADO modulates BBB permeability
through stimulation of endothelial A2AR and A1R (146). An
enhanced uptake of blood lactate may be the consequence, as
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a moderately increased permeability of the BBB is regarded
as a functional mechanism during exercise by serving neu-
ronal metabolism (27). Marked changes, however, could may
limit the individual’s capacity to perform optimally by allow-
ing the accumulation of unwanted substances in the CNS (27). 

Because almost all metabolic processes show a dose-response
relationship during stress exposure with both beneficial and
detrimental outcomes (147), exercise above a certain thresh-
old can cause mal-adaptations as well (148). Regarding pro-
longed strenuous exercise, the exercise-related dose response
induces an inflammatory state (Fig. 1) and may also provoke
an acute neuroinflammatory response (8) due to the high allo-
static load on brain cell metabolism. However, experimental

data are lacking to make clear conclusions about brain metab-
olism during exercise and its relation to neuroinflammation.
But to integrate the existing knowledge about exercise-related
dose response into the concept of neuroinflammation, we pro-
pose a model of continuum in which the astrocyte-neuron lac-
tate shuttle expands to the microglia-astrocyte-neuron lactate
shuttle (149) when energy demand of neurons increase during
exercise (Fig. 1, right box). Both, the intensity-dependent sys-
temic inflammatory response and brain cell-derived purines
may switch the microglial phenotype from the M2/anti-
inflammatory form to the M1/proinflammatory form, thereby
making them more “energy-craving”. That is followed by a
step-by-step inactivation of neurons through astrocyte-
microglia lactate shuttles (10) (Fig. 1: right box, red arrow).

Figure 1: Hypothetical integrative model showing how neuroimmunological and neuroenergetic mechanisms induce feelings of fatigue during
prolonged strenuous exercise, ultimately provoking exercise termination. 
Strenuous exercise favors exercise-induced muscle damage, gut-derived LPS translocation and immune cell expansion (leukocytosis) [1]. At the
same time, the exercise-induced and intensity-dependent increase in neuronal metabolism favors the release of neuronal ‘On’-signals, which
induce lactate transfer from glial cells to neurons, beginning with the astrocyte-neuron lactate shuttle [2] and extending to the microglia-astro-
cyte-neuron lactate shuttle in order to serve the increasing energy needs of the neurons [3]. Microglial autoactivation through microglia-derived
IL-1β and extracellular ATP may promote a switch to the M1/proinflammatory form. As strenuous exercise continues, that leads to a proinflam-
matory state characterized by high circulating amounts of LPS, DAMPs (e.g. HSPs), IL-6 and ROS-damaged immune cells. These proinflamma-
tory signals act either on the BBB, CVOs and VN which then signal to the CNS or they act directly on the CNS by passing the BBB or CVOs [4].
In doing so, these signals may stimulate microglia/brain macrophages through TLR-4 and IL-1β receptors [5] which then continuously shut
down the lactate transfer from astrocytes to neurons through a yet unknown (“selfish”?) mechanism in order to benefit most from astrocytic lac-
tate [6]. Further, the degradation of ATP and AMP through endo- and ectonucleases favor accumulation of extracellular adenosine that impairs
dopaminergic neurotransmission by acting on the A2A/D2/mGLU5 receptor complex on striatal neurons [7]. A possible contribution of IL-1β to
adenosine signalling may further enhance the down regulation of dopaminergic neurotransmission. The resulting neuronal inactivation [8] leads
to a decline in cognition, vigilance and neuromuscular activation, ultimately inducing exercise-induced fatigue [9]. 
A2A: adenosine A2A receptor; D2: dopamine D2 receptor; mGLU5: metabotropic glutamate receptor 5; IL-1β: interleukin 1β LPS: lipopolysaccha-
ride; IL-6: interleukin 6; DAMP: danger-associated molecular patterns; BBB: blood-brain barrier; CVO: circumventricular organs; VN: vagus
nerve; AMP: adenosine monophosphate; ATP: adenosine triphosphate; TLR-4: toll-like receptor 4; HSP: heat shock protein; CNS: central nerv-
ous system.
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This microglial polarization is often accompanied by a shift
from oxidative phosphorylation to aerobic glycolysis for ener-
gy production due to increasing concentrations of nitric oxide
by inducible nitric oxide synthetase which reversibly inhibits
mitochondrial respiration (111). With that, ROS and RNS pro-
duction is increased which, in turn, activates downstream sig-
naling pathways resulting in the up-regulation of a variety of
proinflammatory proteins and more ROS/RNS. 

Whether there is a similar mechanism of energy reallocation
from neurons to activated microglia/brain macrophages dur-
ing non-infectious stress is unknown. However, haemody-
namically stressed microglia express monocarboxylate trans-
porter-1 and -2 (150), which may enable them to utilize astro-
cytic glycogen-derived lactate. Since there is remarkable cere-
bral haemodynamic stress during prolonged strenuous exer-
cise (151), expression of monocarboxylate transporters may
promote the uptake of astrocytic lactate in microglia or brain
macrophages.

Although the amount of LPS crossing the BBB is low (80,81),
some athletes show plasma concentration of 1 ng/ml after an
ultramarathon (63). If LPS crosses the BBB at that concentra-
tion is unknown, but conceivable since the BBB becomes
leakier during strenuous exercise. As LPS-TLR4 interactions
resemble proinflammatory pathways induced by Lipoarabino-
mannan, the major cell wall component of mycobacterium
tuberculosis (152,153), high amounts of LPS in the brain may
be able to induce the expression of astrocyte-microglia lactate
shuttles. Further, cerebral DAMPs may promote astrocyte-
microglia lactate shuttles in a similar fashion by triggering the
microglial TLR4 (Fig. 1). 

Heck et al. (55) propose that the exercise-induced increase in
circulating levels of extracellular 70-kDa heat shock proteins
from lymphocytes promote fatigue via marked influence on
motor neurons and deeper structures of the CNS. Although
specific receptors for heat shock proteins in brain tissue have
not been identified yet, their ability to induce proinflammato-
ry signalling in TLR4/2-expressing cells is well established
(154,155). 

Because lactate does not accumulate in cerebrospinal fluid
after an exhaustive exercise task (156), unlike during tubercu-
lous meningitis (157), we do not know whether it is appropri-
ate to think of the astrocyte-microglia lactate shuttles as a rel-
evant mechanism in exercise-induced fatigue. Further it is
unknown whether extracellular ADO reallocates energy sub-
strates to demanding cerebral immune cells and thereby shut-
ting down the less relevant neuronal metabolism as shown in a
Drosophila infection model on the peripheral level. Extracel-
lular ADO definitively compromises exercise performance in
animals due to its inhibitory effect on dopaminergic neuro-
transmission (134,135). To connect the potential fatigue-
inducing property of ADO, Hanff et al. (158) assume that it
plays an important role in the induction of sickness behavior
via the A2A/D2/mGLU5-receptor-complex (Fig. 1). In fact,
LPS-induced swim deficits is reversed by systemic adminis-
tration of an A2A receptor antagonist (159). A similar recep-
tor-ligand interaction appears to be relevant in the induction
of sleep (160). The stimulation of A2AR and mGLU5R

inhibits the activity in vigilance-regulating brain areas by
presynaptic inhibition, postsynaptic hyperpolarization and
amplifying GABAergic projections (161,162). Increased
dopamine release in the ventral tegmental area reduces the
inhibitory activity in the nucleus accumbens and is promoting
vigilance. 

Dopaminergic neurotransmission in the substantia nigra pars
compacta inhibits neuroinflammation by activating astrocytic
D2-receptors (163). Based on the assumption that IL-1 may
contribute to motivational and vigilance regulation via an
important interaction with ADO signalling in the CNS, i.e.
activation of A2A receptors in the striatum (158) (Fig. 1), the
attenuated dopamin-induced anti-inflammatory effect could
promote synthesis of IL-1. Both, inflammation- and exercise-
induced peripheral hyperammonaemia promote cerebral syn-
thesis of ADO (164,165), which may force exercise-induced
fatigue by altering cognition (165). The increasing impair-
ment of the fronto-striatal network down-regulates cognition
and motivation, which makes exercise termination rather a
relative than an absolute event due to the athlete´s volitional
and forced conscious decision (see Fig. 1) (3,166,167). The
impact of peripheral cytokine signalling and central
microglia/brain macrophage activation on this fronto-striatal
network should be taken into account (69).

CONCLUSION

Exercise-induced fatigue does not emerge from a single
peripheral or central mechanism, but rather result of a syner-
gistic effect of various mechanisms involving both peripheral
and central aspects. As an evolutionary conserved protective
mechanism, neuron inactivation and the concomitant increase
in feelings of fatigue are extremely useful to maintain sys-
temic homeostasis at all bodily levels, also during exercise. If
the immune system is even selfish in the brain,
microglia/brain macrophage-derived extracellular ADO could
mediate the metabolic switch and energy reallocation, thereby
inducing neuron inactivation, feelings of fatigue and ultimate-
ly exercise termination. Due to the impact of IL-1 on feelings
of fatigue and behavior modulation, the synthesis of IL-1
from perivascular and meningeal macrophages during strenu-
ous exercise has to be considered when approaching the com-
plexity of exercise-induced fatigue. Changes in cerebral
haemodynamics are not investigated in this article but should
be subject of further studies about the regulation of exercise
performance. In order to get deeper insights into the brain
metabolism during prolonged strenuous exercise and its rela-
tion to neuroinflammation, the hormesis-like dose response of
brain macrophage activation during exercise should be inves-
tigated in future studies.

As presented here, the majority of aspects concerning neu-
roimmune-neuroenergetic interactions in sports performance
are not very well established and need to be evaluated in the
future. Therefore, it is inevitable to improve interdisciplinary
research in this field.
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