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ABSTRACT

Microparticles (MPs) are shed membrane vesicles released
from a variety of cell types in response to cellular activation
or apoptosis. They are elevated in a wide variety of disease
states and have been previously measured to assess both dis-
ease activity and severity. However, recent research suggests
that they also possess bioeffector functions, including but not
limited to promoting coagulation and thrombosis, inducing
endothelial dysfunction, increasing pro-inflammatory
cytokine release and driving angiogenesis, thereby increasing
cardiovascular risk. Current evidence suggests that exercise
may reduce both the number and pathophysiological potential
of circulating MPs, making them an attractive therapeutic tar-
get. However, the existing body of literature is largely com-
prised of in vitro or animal studies and thus drawing mean-
ingful conclusions with regards to health and disease remains
difficult. In this review, we highlight the role of microparticles
in disease, comment on the use of exercise and dietary manip-
ulation as a therapeutic strategy, and suggest future research
directions that would serve to address some of the limitations
present in the research to date.
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INTRODUCTION

Microparticles (MPs) are shed membrane vesicles, usually
ranging in size from 0.1 to 1 µm. They are distinct from exo-
somes, which tend to be smaller (<0.1 µm) and have a differ-
ent method of formation (1) – this review will focus solely on
MPs, their pathophysiology within clinical populations and
the potential of exercise as a therapeutic strategy.

Causes of formation
MPs are released from the cell membrane during apoptosis or
activation, elicited by a variety of stimuli. For example, the
activation stimuli could be inflammation, oxidative stress or
mechanical/haemodynamic fluctuations depending on the par-
ent cell in question. After their formation, MPs express sur-

face proteins and antigens that are suggestive of their cellular
origin, through which they can be identified by laboratory
techniques (the most common MP cellular sources and their
corresponding surface antigens are listed in Table 1). The MP
membrane might also include negatively charged phospho-
lipids, the majority of which are phosphatidylserine (PS)
which is exposed on the outer layer (2). For a list of possible
detection methods and a comparison of their minimum
detectable vesicle sizes, see Van Der Pol et al (3).

Mechanisms of formation
A resting, inactivated phospholipid membrane will display
phospholipid asymmetry, i.e. different phospholipids dis-
played on the outer and inner layer (PS is displayed on the
inner layer in a healthy membrane(5)). This asymmetry is
maintained by the enzymes gelsolin, aminophospholipid
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MP Cellular Source Surface antigen/s used for determination

All cells Phosphatidylserine*

Leukocyte CD11a, CD45

Granulocyte CD11b, CDF66

Platelet CD31 (PECAM-1), CD40L, CD41/a, CD42b,

CD61

Monocyte CD11b, CD14, CD16

Endothelial cell CD31, CD51, CD54 (ICAM-1), CD62E  

(E-Selectin), CD62P (P-Selectin), CD105

(endoglin), CD144 (VE-Cadherin), CD146 

(S-Endo 1)

Neutrophil CD66b

Erythrocyte CD235a

Lymphocyte CD3, CD4, CD36

Table 1. The most common cellular sources of MPs, along with the
corresponding antigens exposed on their outer surface. As many cel-
lular sources can be represented by several cell surface markers, dif-
ferences may occur in the literature when studies have used different
markers for the same MP derivation, which could lead to inaccura-
cies. CD = Cluster of Differentiation, PECAM = platelet-endothelial
cell adhesion molecule, ICAM = intercellular adhesion molecule. *The
value of measuring PS (by assessing the degree of ligation with its
detector reagent Annexin-V) to quantify ‘all MPs’ has been ques-
tioned; as many as 80% of MPs do not bind with Annexin-V in vitro
and therefore do not express PS on their outer surface (4). PS-nega-
tive MPs which do not bind with Annexin-V demonstrate reduced pro-
coagulant activity compared to their PS-positive counterparts (4)
however their functional significance remains unclear and warrants
further investigation.
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translocase, floppase, scramblase and calpain (for a full
review of these enzymes’ kinetics and how they pertain to MP
formation, see Piccin, Murphy, & Smith, 2007)(6). Cellular
activation or apoptosis causes the endoplasmic reticulum to
release calcium into the cytosol, which alters the actions of
these enzymes, resulting in a restructuring of the cytoskeleton
and a reversal of the phospholipid asymmetry and therefore
externalisation of PS. This causes outward ‘blebbing’ of the
cell membrane and ultimately fissure, resulting in a released
vesicle that might express both PS and surface proteins related
to its parental cell on its outer membrane. This process is dis-
played in Figure 1.

Less is known about how MPs are acutely cleared from the
circulation. Firstly, clearance must exceed production, mean-
ing that the activation/apoptotic stimulus must either be
removed or decreased to a large enough extent to allow the
return of cell quiescence, thus reducing MP formation.
Beyond reduced production, proposed mechanisms for the
removal of MPs from the circulation include direct binding of
phagocytes to either PS or opsonisation proteins (e.g. comple-
ment) on the MP surface (7), IgM-mediated phagocytosis by
macrophages (8), and destruction by circulating phospholi-
pases (9). Particle size may influence the method employed to
clear MPs (8), however this requires further investigation.
Conversely, MPs may also adhere to the endothelium or form

thrombi due to their reported expression of adhesion mole-
cules (e.g. P-Selectin) (10) or Tissue Factor (TF) (11), respec-
tively, meaning they are not removed from the circulation but
are not detectable using standard techniques, creating the illu-
sion of their absence. Further investigation is necessary to elu-
cidate how MPs are acutely removed from the circulation.

Sources
MPs can be derived from many different cellular sources as
shown in Table 1, including leukocytes, platelets, erythrocytes
and endothelial cells (12). The stimuli for the release of MPs
from these cells differ depending on the cell, as various condi-

tions will initiate activation and/or apoptosis of each cell type.
Whilst MPs are present in healthy populations (13), the pri-
mary aim of this review is to explain the pathophysiological
role of MPs in  clinical populations and the potential impact of
exercise.

Methods of Detection
There are several different laboratory techniques that are reg-
ularly used for the identification of circulating MPs in the lit-
erature. Broadly, these include: flow cytometry; transmission
electron microscopy; nanoparticle tracking analysis, and
resistive pulse sensing. Whilst flow cytometry generally has a
higher minimum detectable threshold than other techniques

Figure 1. The steps involved in the process of MP formation. a) Demonstrating a healthy membrane, with phospholipid asymmetry and the
presence of the regulatory enzyme floppase (interchangeable in this diagram with the other regulatory enzymes mentioned). b) Activation or
apoptotic stimuli causes fluctuations of cytosolic calcium, altering the activity of the regulatory enzymes and causing cytoskeletal disruption. c)
Membrane blebbing, and loss of phospholipid asymmetry resulting in externalisation of phosphatidylserine. d) Fissure of the membrane, result-
ing in the formation of an MP which is now a distinct vesicle from its original membrane. This MP will express surface antigens representative of
its parent cell, which can be assessed to identify the origin of the MP. The MP size and number of phospholipids present in the membrane in
Figure d) is not truly representative; the purpose of this diagram is to illustrate the formation process. In reality, the MP is of far greater size rela-
tive to the phospholipids, which are also present in far greater abundance in the MP membrane.
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and can be time and labour intensive, it provides the most
information with regards to MP size, complexity and cellular
surface marker expression, and therefore remains the ‘gold
standard’ technique most applicable to clinical research
(3,14). Flow cytometry also provides high throughput whilst
remaining relatively cheap, making it desirable when com-
pared to other techniques (15).  More novel techniques for
detection of MPs include Raman microspectroscopy, micro
nuclear magnetic resonance, and small-angle X-ray scattering.
However, whilst these techniques may offer new insights in
MP research, they are very specialised and not yet commer-
cially available (16). Lastly, it must also be noted that sample
collection and preparation techniques, including  needle
gauge and anticoagulant used for sample collection, tourni-
quet use, centrifugation protocol, freezing and thawing proto-
col, and buffer filtration may influence the detection of  total
(17,18) and phenotype-specific MPs (19) and thus should be
considered when interpreting results. The lack of uniformity
in MP collection and analysis protocols used in the literature
makes the results difficult to interpret.

Microparticles in Disease
Elevated MP levels have been found in a variety of disease
states (20), leading to the investigation into their use as prog-
nostic markers to both comment on the current pathophysio-
logical condition and predict future outcomes. There now
exists a steadily growing body of literature that suggests that
MPs can also display biological effector functions, i.e. they
are able to influence other cells or systems (21), primarily in a
pathophysiological manner. 

Biomarker functions
As MPs are released upon cell stress, they are elevated in a
variety of disease states and might be used as biomarkers of
disease severity. MPs are elevated in a number of chronic sys-
temic inflammatory conditions (22) including rheumatoid
arthritis (23) and systemic lupus erythematosus (24), cardio-
vascular diseases (25) including stroke and acute coronary
syndrome patients (26,27), various forms of cancer including
colon, prostate, breast, ovarian and gastric cancer (28,29),
HIV (30), and various forms of renal disease including pre-
dialysis chronic kidney disease, patients receiving varying
dialysis modalities and renal transplant recipients (31,32).
Many other conditions have been associated with increased
MP levels – their rather unspecific nature of release (i.e. upon
an activation or stress stimuli) means that a wide variety of
stimuli can elicit MP shedding from a large number of cell
types. For this reason, elevations in total or phenotype-specif-
ic MP counts may not be unique for each disease (33). There-
fore, it may be more pertinent to ‘profile’ trends in the
changes of many MP surface markers in different disease
states to  identify a panel of a combination of markers, the
changes of which can be much more sensitive to disease
severity or risk than the measurement of one MP phenotype or
marker alone (34). This profiling method has been successful
in strengthening the use of MPs as biomarkers in conditions
such as various liver diseases (35), malaria (36) and athero-
sclerosis (37). However, this approach is not always success-
ful in delineating different diseases, for instance in various
forms of cancer (34). In this case, combining the identification
of surface makers with measures of micro RNA content can

increase the biomarker sensitivity of MPs (38,39) and
improve diagnostic power. 

Bioeffector functions
More recently MPs have also been considered as biologically
active with effector functions rather than simply biomarkers
of disease (21). The majority of this research has occurred
either in vitro or ex vivo, owing to the difficulty of isolating
the effects of MPs in an in vivo setting and the ethical issues
involving MP infusion in human participants due to their
potential pathophysiological impact. Several studies have
used in vivo study designs to investigate MP infusion in ani-
mals, for instance to explore the mechanism behind MP-asso-
ciated coagulation (40) and thrombus formation (41) in mice,
however the primary purpose of this review is to comment on
the current state of the literature concerning MPs in diseased
human populations.

Endothelial MPs (EMPs) can induce endothelial activation
and dysfunction (42) by reducing endothelium-dependent
vasodilation in response to acetylcholine (43,44) and decreas-
ing the release of the vasodilation-inducing nitric oxide (NO)
(44,45) when incubated in vitro with rat aortic rings. This can
reduce the ability of the vasculature to respond to fluctuations
in haemodynamic pressure, inducing cardiac stress and left
ventricular hypertrophy (46), and increasing cardiovascular
mortality (47). Similarly, angiotensin II, which promotes
vasoconstriction via activation of the renin angiotensin sys-
tem and thus increases cardiovascular risk (48) can increase
EMP release when incubated in vitro with murine endothelial
cells (49), indicating endothelial damage. Increased circulat-
ing count of MPs of all cellular derivations has been positive-
ly associated with the circulating concentration of several
reactive oxygen species (ROS), including plasma glutathione
peroxidase and superoxide (50,51). When EMPs are incubat-
ed in vitro with  human umbilical vein endothelial cells
(HUVECs), the detrimental changes seen in angiogenesis
(e.g. a reduction in total capillary length) were alleviated the
presence of superoxide dismutase (52), implicating ROS pro-
duction as a potential mechanism by which MPs can impair
vascular function. 

EMPs released from HUVECs in response to the pro-inflam-
matory cytokine TNF-α have a high calcium content and can
induce osteogenesis and calcification when incubated with
vascular smooth muscle cells (53). Similarly, platelet MPs
(PMPs) incubated with rat aortic rings can promote angiogen-
esis via increased vascular endothelial growth factor (VEGF)
activity (54) whilst EMPs incubated with HUVECs can
increase PI3K activity, which plays a critical role in angiogen-
esis (55). Whilst angiogenesis is important for maintaining
vascular health and homeostasis (56), excessive or dysregulat-
ed angiogenesis has been implicated in many conditions,
including cancer (via loss of tumour growth suppression),
some autoimmune disorders, atherosclerosis, pulmonary
hypertension and inflammatory bowel disease, among others
(57). These effects on the vasculature may increase cardiovas-
cular risk and thus risk of mortality (58,59). Lastly, PS exter-
nalised on MPs can bind with the pro-thrombotic and pro-
coagulant TF to initiate and promote thrombosis and coagula-
tion (60–62) increasing the risk of embolism and driving ath-
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erosclerosis (63). Elevated MP counts might therefore be pre-
dictive of mortality in a variety of conditions (64–66). 

Whilst the ‘quantity of MPs (i.e. concentration in the circula-
tion) is important, their ‘quality’ (i.e. sourced from healthy or
dysfunctional parent cells, their protein and RNA contents and
composition) also impacts their transfer of information and
thus bioeffector functions (67). EMPs released from a healthy
endothelium help to maintain a protective low-grade procoag-
ulant activity by increasing platelet clot stability (68), whilst
EMPs released from damaged endothelial cells (e.g. due to
atherosclerosis) can further induce endothelial dysfunction in
a ‘vicious cycle’ manner by promoting atherogenesis (21,25).
MPs isolated from human atherosclerotic plaque contain the
metalloprotease TNF-α converting enzyme which increases
TNF-α shedding from HUVECs, whilst this enzyme is not
found in MPs isolated from healthy human internal arteries
(37). Similarly, EMPs isolated from acute myocardial infarc-
tion, when incubated with rat aortic rings, caused a significant
reduction in acetylcholine-induce endothelium dependent
relaxation which was not seen when EMPs isolated from non-
ischaemic patients were incubated at the same concentration
(43) suggesting a difference in the quality of these MPs.  Sim-
ilarly, MPs were found at similar levels in the circulation of
cardiac surgery patients and healthy controls, however the
MPs from the patient group expressed significantly more TF,
and thus promoted thrombogenesis to a greater extent in an in
vivo model (11). Furthermore, the mRNA and micro RNA
composition of EMPs as well as the ability of EMPs to trans-
fer these RNAs to their target cells differs in certain disease
conditions, for instance in coronary heart disease (69). Simi-

larly, activation status may alter the micro RNA composition
of MPs (70,71). 

Consequently, any intervention which reduces the level of cir-
culating MPs and positively alters their composition in clini-
cal populations might be a therapeutic strategy, which could
ultimately reduce morbidity and mortality. However, caution
must be exercised when interpreting findings from in vitro
studies. Whilst in vitro studies provide useful and direct infor-
mation regarding how a particular variable impacts MP kinet-
ics, they cannot account for the plethora of other factors that
may influence these parameters in an in vivo setting. This is
particularly pertinent in patients that suffer from systemic
conditions that may alter a wide array of factors that could be
expected to alter MP kinetics.

It should be noted that beneficial effects of MPS are also
reported in the literature. MPs deliver RNAs, growth factors
and cell surface receptors to target cells and as such are neces-
sary for cellular communication (72). MP functions that are
detrimental when aberrantly regulated (e.g. accelerated
thrombosis) are a necessary response to vascular injury and
important in wound healing.  Additionally, platelet-derived
MPs can inhibit apoptosis of polymorphonuclear leukocytes,
potentially mediated by the influence of TGF-β1 (73). Simi-
larly, shedding of endothelial cell MPs prevents an accumula-
tion of caspase 3 and thus promotes cell survival via preven-
tion of premature endothelial cell detachment and apoptosis
(74). Some leukocyte derived MPs stimulate NO production
(75) and can release anti-inflammatory effectors such as
Annexin 1 (76) which can prevent endothelial leukocyte adhe-

Figure 2. Examples of the immunologic signalling mechanisms MPs utilise to facilitate their bioeffector functions. Included are the typical path-
ways that these mechanisms initiate, and the typical end result. • = signalling mechanism, ◊ = typical physiological consequence.
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sion  and thus endothelial dysfunction (77). However, the vast
majority of the research to date focusses on the deleterious
effects of MPs (67) and thus they are considered to be largely
pathophysiological in nature.

Signalling Mechanisms
MPs exert their bioeffector functions by implementing a vari-
ety of immunologic signalling mechanisms. MPs may bring
about activated T-cell apoptosis by exposing Fas ligand (FasL
– a death receptor ligand) (78) which can contribute to
immune suppression and has been implicated in indirectly
promoting tumour growth (79). MPs also mediate antigen
presentation via the exposure of MHC class I and II molecules
(80) which they can present to dendritic cells to facilitate
immune surveillance (81). Similarly, the lipid component of
MPs can activate Toll Like Receptor 4 on macrophages, stim-
ulating antigen presentation (82). Additionally, MPs promote
inflammation by transferring transport receptors to target cells
(83) – for instance MPs from activated leukocytes increase
tyrosine phosphorylation of endothelial cells, thus inducing
their activation and increasing TF and IL-6 production (84).
The pro-atherosclerotic role of MPs is mediated in part by the
ability of MPs to transfer Intercellular Adhesion Molecule-1
(ICAM-1) to endothelial cells, thus increasing monocyte
adhesion to the endothelium and promoting atherosclerotic
plaque progression (85). MPs can also alter protein structure
and function by transferring genetic information to their target
cells, for instance mRNA and microRNA, which subsequently
alter post-transcriptional regulation (83,86). Lastly, MPs may
promote virus survival and growth via transfer of chemokine
receptors, For instance, MPs released from HIV-infected cells
can transfer CCR5 and CXCR4 to cells lacking these recep-
tors, therefore making them susceptible to HIV (87). The
immunologic signalling mechanisms of extracellular vesicles
are discussed in greater depth by van der Pol et al (83) and are
summarised in Figure 2.

Exercise and Microparticles
The beneficial effects of regular, moderate intensity aerobic
and resistance exercise are well documented in the general
population, and include improved body composition (88),
increased physical capacity (89), reduced cardiovascular dis-
ease risk (90),  reduced systemic inflammation (91), enhanced
immune function (92) and reduced mortality (93). Exercise
may also influence MP release via haemodynamic mecha-
nisms. Aerobic exercise elicits increased blood flow to meet
the extra oxygen demands of the working muscles, which can
modify haemodynamic activation of both freely circulating
cells and cells adhered to the endothelium via alterations in
shear stress. Shear stress is a product of blood viscosity and
flow rate; therefore aerobic exercise-induced increased blood
flow can increase shear stress (94), which has been implicated
in MP formation and release via modulation of cell membrane
quiescence (95–97) due to mechanic and haemodynamic cel-
lular activation. When considering platelets, increased shear
stress may increase GPIb-dependent binding to endothelial
Von Willebrand Factor, which can initiate PMP formation and
thrombosis (96). The mechanism by which increased shear
stress elicits increased MP shedding from other cell types is
less clear and warrants further investigation. Additionally,
both reduced physical activity and enforced physical inactivi-

ty can cause endothelial dysfunction (impaired flow-mediated
dilation) accompanied by increased circulating resting EMP
levels (13,98). Whilst acute aerobic exercise can also tran-
siently increase MP formation as explained above, regular
aerobic exercise training has been shown to improve endothe-
lial function in cardiovascular disease populations (99,100)
and therefore may be expected to reduce resting MP levels.
Acute aerobic exercise may also increase cellular activation
by transiently increasing catecholamine (e.g. norepinephrine)
levels (101), thus increasing MP shedding by lowering mem-
brane quiescence. Lastly, acute aerobic exercise can increase
leukocyte apoptosis (102), potentially triggered by increases
in cellular oxidative stress caused by increased reactive oxy-
gen species production (103). As MPs are released by apop-
totic cells (104), this exercise-induced apoptosis also increas-
es MP production.

Healthy Population
There has been a great deal of recent research investigating
the effects of acute and chronic exercise on MP kinetics in
healthy participants undertaking aerobic exercise. However,
the findings seem to be conflicting; some studies report
increased post-exercise MP counts of platelet origin, particu-
larly after strenuous exercise (105–109), which suggests a
pro-thrombotic effect due to the high TF expression usually
found on platelet-derived MPs (110,111). Mechanical activa-
tion of platelets and thus accelerated MP shedding is cited as
the cause of this. Conversely, other studies have found no
change in EMP or PMP levels following high-intensity (100%
peak power output) cycling (112) or even shown a reduction
in circulating EMPs following cycling of various intensities
(55-100% peak power output) (113). This disparity may be
caused by training status; the studies mentioned above which
found increased MPs used healthy but sedentary (i.e. exercise
frequency of ≤ 1/week) participants, whilst those that found
decreased MPs used trained participants (either author-
defined as ‘fit’ (112) or trained triathletes and cyclists (113)).
This hypothesis is supported by studies investigating chronic
regular aerobic exercise training, which display both an atten-
uation in the acute exercise-induced increase in MPs (neu-
trophil and platelet derived) (108,109) and a reduction in rest-
ing EMP counts (97,114) following prolonged training (e.g. 3
times/week for 6 months). Therefore, in the general popula-
tion, it seems that whilst acute aerobic exercise may increase
circulating MP counts, regular aerobic exercise training can
either attenuate or abolish this effect and reduce resting circu-
lating MP levels. This may be due to an adaptation effect
caused by the repeated exposure of the endothelium to high
SS elicited by aerobic exercise, which would prevent endothe-
lial leukocyte adhesion and endothelial cell activation and/or
apoptosis. Regular exercise training also improves endothelial
function and increases resting NO availability (115), which
may partially mitigate the increased SS caused by increased
blood flow and thus prevent MP formation as explained above
(52).

Clinical Populations
There is less research concerning exercise and MPs in clinical
populations, especially considering the importance of health
improvements when compared to the already ‘healthy popula-
tion’. When compared to healthy controls, patients with vas-
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cular disease referred for stress echocardiography (incremen-
tal intravenous Dobutamine infusion until 85% of age-predict-
ed maximum heart rate was reached) displayed a diminished
post-test increase in leukocyte, granulocyte and monocyte
MPs, whilst platelet, erythrocyte and endothelial MPs
increased as normal (116). Similarly, a single bout of high
intensity interval cycling (intervals completed at 100% peak
power output) did not affect platelet or endothelial MP counts
in coronary heart disease patients (112). It is unclear why
patients with cardiovascular deficiencies would exhibit
reduced MP release, as they would be expected to display
reduced exercise-induced vasodilation due to arterial stiffen-
ing (117) and potentially increased shear stress-mediated MP
release. A possible explanation is that CVD patients display
reduced cardiac contractile power due to a reduction in stroke
volume mediated by left ventricular hypertrophy and a
reduced ejection fraction. Therefore, the haemodynamic
response to aerobic exercise may be blunted in CVD patients
(118), blunting the subsequent MP response.  However, fol-
lowing 12 weeks of either continuous or interval aerobic exer-
cise training, coronary artery disease patients displayed no
change in resting EMP levels, despite showing improvements
in endothelial function as measured by flow mediated dilation
(119). In the same study, baseline EMP levels were inversely
correlated with increases in peak VO2 consumption, suggest-
ing that pre-existing elevated EMP levels (perhaps suggesting
the presence of endothelial dysfunction) may prevent subse-
quent aerobic training adaptation. A possible explanation,
similar to above, is that cardiovascular disease-associated
contractile and endothelial impairments create a vascular
‘dormancy’ which reduces MP increases in response to exer-
cise. This increase is seen as a normal physiological response
(116), the absence of which may prevent the chronic training-
associated improvements in MP levels seen in the general
population. However, renal transplant recipients displayed
reduced circulating EMP levels following 6 months of aerobic
exercise training compared to non-exercise controls (120).
Renal transplant recipients are considered at heightened risk
of cardiovascular events (121) and display impaired flow
mediated dilation (122) and increased prevalence of left ven-
tricular hypertrophy (123), demonstrating that exercise can
improve MP levels in a population displaying cardiovascular
decrements. This was accompanied by a reduced endothelial
progenitor cell concentration, which may signify either
reduced vascular repair capacity or reduced vascular damage
(which is more likely considering the reduced EMP levels),
therefore reducing the repair stimulus and subsequent progen-
itor cell response.

There is a clear lack of uniformity concerning the effects of
exercise on MP levels and composition in clinical populations
in the current body of literature. This may be in part due to the
different methods of isolation used. Flow cytometry was the
most commonly used technique to measure MPs in the studies
mentioned above, however the processing and isolation proto-
cols used were not uniform which may have impacted the MP
counts. Whilst it is evident that regular exercise training is
effective in reducing cardiovascular risk in both healthy and
diseased populations, the disparity seen in the MP literature
may suggest that one size does not fit all. For instance, it is
unclear why acute aerobic exercise, particularly of a very high

intensity, would elicit an increase in circulating MP counts in
sedentary healthy individuals (105,106) but not in the cardio-
vascular disease population (112). It is possible that MP
release is increased following exercise in cardiovascular dis-
ease patients but they are not measurable in the circulation,
for instance because they have formed clots or adhered to
endothelial cells, thereby promoting their pathophysiological
influence. As previously mentioned, little is known about the
clearance of MPs from the circulation (124) and therefore this
may require further investigation. Similarly, patients from dif-
ferent disease populations display differing MP responses to
comparable exercise interventions. More research is neces-
sary to investigate the effects of different exercise regimens
on MP kinetics in various patient populations in order to tailor
rehabilitation programmes more effectively to patients
depending on their comorbid conditions. For instance, cardiac
rehabilitation programmes in coronary heart disease patients
typically consist of regular moderate intensity aerobic exer-
cise (125) however this type of training does not seem to
influence MP levels in this population (119). Similarly, the
lack of changes in MP kinetics seen after high intensity train-
ing requires further investigation. As the primary cause of MP
formation during exercise is suggested to be cellular activa-
tion caused by haemodynamic activation, it is unclear why
this type of training would not elicit increased MP release in
certain populations (112,119). Lastly, resistance training is an
effective training modality for reducing cardiovascular risk in
diseased populations (126) however the impact on MP kinet-
ics is under-researched. Research investigating the role of
resistance training in modulating MP levels and reducing car-
diovascular risk will allow more well-rounded exercise pro-
grammes to be designed for specific patient populations.

Interestingly, MPs may also play a role in the adaption to
exercise training. MPs and exosomes released during aerobic
exercise have been proposed to contain proteins and nucleic
acids (for instance heat shock protein 70) (127) that are
hypothesised to mediate organ crosstalk and promote sys-
temic adaption to aerobic exercise (128). As such, it is been
hypothesised that small extracellular vesicles released from
the muscle during aerobic exercise may mediate many of the
systemic adaptations to endurance exercise that prevent or
lessen the severity of health conditions such as obesity and
Type 2 Diabetes Mellitus (129). However, this concept
requires further investigation.

Diet and Body Composition
Diet, body composition and gender also influence MP levels,
and these relationships may be modulated by exercise. Inac-
tive, obese males displayed reduced circulating EMP levels
following moderate-to-high intensity cycling compared to a
non-exercise control trial completed in a randomised counter-
balanced manner, whilst overweight females displayed
increased EMP levels compared to their non-exercise control
trial (130). The cause of this gender disparity is unknown; the
authors suggest a possible modulating effect of oestrogen with
regards to cardiovascular disease risk. Indeed, in healthy indi-
viduals, increased EMP and PMP counts have been observed
in females, the levels of which may be altered by the menstru-
al cycle stage (i.e. luteal versus follicular phase) and the asso-
ciated fluctuations in oestrogen and progesterone (131). Addi-
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tionally, other cardiovascular risk factors such as central obesi-
ty, elevated total cholesterol and reduced high-density lipopro-
tein cholesterol may be more prevalent in females (132). MP
kinetics may therefore be another mechanism by which cardio-
vascular risk differs based on gender. Furthermore, females
display elevated endothelial progenitor cell counts compared
to males (133), suggesting stimulated repair mechanisms in
response to greater activation or damage, which would explain
the increased EMP levels. Regardless of gender, excessive adi-
pose tissue has been associated with elevated circulating PMP
levels compared to age-matched non-obese controls (134).
This elevation was partially reduced by a 12 week calorie-
restricted diet (1200 kcal/day for women, 1700 kcal/day for
men) which reduced BMI by roughly 10%, and was reduced to
a greater degree by a 12 week programme of calorie restriction
and regular aerobic exercise (3 times/week, 60 minutes, 12-14
RPE) which reduced BMI by roughly 12%. Diet coupled with
exercise was also more efficacious in reducing fat tissue mass,
visceral and subcutaneous fat area, and total and LDL choles-
terol, offering other possible explanations for the reduced PMP
count beyond simply reducing BMI. The increased MP levels
seen in obesity may be partially caused by the MP response to
a high fat and/or carbohydrate diet. Postprandial hypertriglyc-
eridaemia and hyperglycaemia caused by high dietary fat and
carbohydrate intake can induce vascular dysfunction (i.e.
impaired vasodilatation), possibly mediated by increased
oxidative stress and NO inactivation (135), or increased adhe-
sion molecule (VCAM-1, ICAM-1) expression, increasing
leukocyte infiltration (136). As such, EMP and total MP are
elevated in response to high fat and carbohydrate meals
(137,138), offering a possible explanation for the increased
coagulation and thrombotic activity of the TF pathway seen
during hypertriglyceridaemia and hyperglycaemia (139).
However, this response may be ameliorated by exercise. Mod-
erate intensity cycling (60-75% VO2 to elicit an energy expen-
diture of 4-6 kcal/kg) completed 1 hour before ingestion of a
high-fat meal blunted the postprandial increase in EMP levels
that was seen in the non-exercise control trial (140). However,
100 mins of cycling at 70% VO2 peak completed the previous
evening did not affect the increase in EMPs seen in response to
a high fat meal ingested the following morning (141). This
suggests a more direct effect on MPs rather than indirect via
lipid alterations, as moderate exercise completed the day
before the consumption of a high fat meal can attenuate post-
prandial lipaemia (142). MPs would also be affected if they
were dependent on blood lipid levels.

It is unclear whether or not the increase in MP counts often
seen after consumption of a high fat meal represents a clini-
cally significant effect that could elicit pathophysiological
consequences. In some disease states, such as diabetes or
coronary artery disease, the disparity between the MP counts
of the disease population and the healthy population is compa-
rable with the magnitude of the increase seen between pre-
and post-prandial conditions (141,143). Whilst this suggests
the potential to exert pathophysiological effects, the transient
nature of the post-prandial MP increase may prevent the
development of any clinically significant health decrements.
Further research is required to investigate the impact of regu-
lar high fat meal consumption on MP kinetics and the possible
downstream pathophysiological consequences.

Clinical Implications and Further Research
In summary, elevated MP levels and altered composition are
seen in a number of disease states, having a number of patho-
physiological effector functions. Exercise may help to reduce
MP levels and thus diminish their pathophysiological poten-
tial but more research is needed to elucidate these effects, par-
ticularly in clinical populations that display elevated cardio-
vascular risk. Studies investigating chronic exercise training
in clinical populations are needed to investigate MP levels and
composition, and how they relate to measures of systemic
inflammation, thrombotic potential, vascular damage and var-
ious cardiovascular risk factors. Additionally, the effects of
resistance exercise with regards to MPs are under-researched,
as resistance exercise can be a powerful therapeutic tool for
reducing morbidity and maintaining physical function in clin-
ical populations (144). Increases in blood pressure and associ-
ated reductions in arterial compliance (145) caused by skeletal
muscle contraction during resistance exercise could create an
environment that promotes MP shedding,  an interesting topic
for future research. The evidence to date is encouraging, and
suggests that, whilst acute exercise can increase circulating
MP counts, regular exercise training can diminish this effect
and eventually reduce overall resting MP counts, partially pre-
venting their pathophysiological effects. This effect has been
demonstrated within as little as 5 weeks of regular aerobic
exercise training (109). However, given the widespread sys-
temic effects of exercise and the numerous pathways eliciting
MP release from various cell types, more research must be
done to better understand how exercise affects the number and
bioeffector function of microparticles.
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