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The stress response of the liver to physical exercise
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ABSTRACT

Recent research on the effectiveness of training interventions indicates major
alterations of hepatic lipid metabolism and suggests a substantial and beneficial
adaptation of the liver to regular physical activity in humans. However, while
various data demonstrate the response of the working skeletal muscle to acute
exercise and training, considerably less is known about the molecular events in
the liver during and after increased physical activity. Here we discuss recent stu-
dies performed in rodents, that elucidate the acute hepatic response to one single
bout of exercise with particular emphasis on stress response-related pathways.
The acute transcriptional response to one exercise bout comprises three-times
more hepatic transcripts than those expressed in soleus muscle, with a significant-
ly more pronounced up- or downregulation of hepatic genes. Evaluation of the
affected pathways shows that the liver responds to acute exercise with a rapid
activation of the mitogen-activated protein kinase (MAPK) signalling pathway, of
the p53 protein, and of interleukin (IL)-6-type cytokine signalling pathways,
resulting in a marked transcriptional upregulation of stress response genes (e.g.
transcription factors of the Fos/Jun-family, growth arrest and DNA damage
(GADD)45γ, and p53-target genes) and genes typically induced by energy deple-
tion, e.g. insulin-like growth factor binding protein (IGFBP)-1, peroxisome proli-
ferator-activated receptor coactivator (PGC)1α. One explanation for the marked
differential expression of hepatic genes immediately after exercise is the induction
of energetic stress. After non-exhaustive exercise energy depletion predominantly
occurs in the liver, not as much in the working muscle, and during exercise, the
liver is exposed to altered concentrations of insulin and glucagon in the portal
vein. Furthermore, lower plasma glucose levels post-exercise are related to
increased expression levels of stress response genes. It appears that the unique
function of the liver to supply glucose for the working muscle renders this organ
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especially susceptible for exercise-induced cellular stress that leads to the marked
induction of defense adaptations. These results give rise to the question whether
these molecular events are linked not only to stress defense but to the metabolic
adaptations of the liver to exercise.
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INTRODUCTION

Regular physical activity is known to have multiple health benefits including the
maintenance of insulin sensitivity and of cardiorespiratory fitness, and it is a
major factor to prevent the onset of coronary heart disease and type 2 diabetes
mellitus (23, 36, 84, 87, 104). Physical inactivity has the opposite effect: the
reduction of ambulatory activity for two weeks in young healthy men causes a
decline of peripheral insulin sensitivity (63). The molecular mechanisms which
are responsible for the beneficial effects of exercise on the peripheral tissues are
incompletely understood. The importance to elucidate these mechanism is aug-
mented by the fact that there is a large variability in the individual outcome of
training interventions on mitochondrial function, on changes in aerobic physical
fitness and on insulin sensitivity (108) and that not all people exhibit an apparent
improvement of their individual insulin sensitivity by performing regular exercise
(14).

The working skeletal muscle plays an outstanding role during exercise as
the most directly affected organ. Researchers have mainly focused on the molecu-
lar response of the contracting muscle. The invasive nature of these investigations
is a clear limitation for studies of other tissues like the liver and therefore little
data are available. However, exercise is a major challenge also for other organs,
particularly for the liver due to its central role in the maintenance of glucose and
lipid homeostasis and its function as energy supplier for the working muscle (34,
59, 121, 123). Recent research on the effectiveness of training interventions
shows major alterations of hepatic lipid content and suggests a significant adapta-
tion of hepatic metabolism to regular physical activity (53, 105, 106, 111, 113).
These findings gave rise to the hypothesis that the liver is strongly affected by
exercise and initiated studies on molecular events induced by physical activity in
the liver. Due to the mentioned limitations to investigate the hepatic response in
humans, rodent models of exercise are used to elucidate the exercise-dependent
regulation of signal transduction pathways, gene expression and protein levels in
the liver. Data from these studies will be discussed with a specific emphasis on
the stress response of the liver to acute exercise.

EVIDENCE FORA MARKED HEPATIC RESPONSE TO EXERCISE
– HUMAN STUDIES

Application of noninvasive proton magnetic resonance spectroscopy (1H-MRS)
enables the accurate quantification of liver fat content (54, 73, 110) and allows the
independent measurement of the effectiveness of lifestyle interventions on body
weight, visceral adipose mass and ectopic fat. Data from 181 subjects obtained in
the Tuebingen Lifestyle Intervention Program revealed that after nine months of
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reduced calorie intake and increased physical activity, the most prominent reduc-
tion was found in liver fat (mean - 32 %), while the mean decrease in visceral fat
was 13 %, and the mean reduction of total body fat and subcutaneous fat was
modest (105, 113). After these nine months of intervention, fasting glucose was
decreased and peripheral insulin sensitivity was increased indicating the effective-
ness of the program. A similar reduction in hepatic lipids was found after four
weeks of aerobic training in 19 sedentary obese men and women in the absence of
weight loss (53). Reduced liver fat without any changes in body weight was also
reported in two others studies that combined exercise training with caloric restric-
tion (64, 111). Although not all studies examining the impact of exercise interven-
tion on liver fat could show a clear relationship of increased physical activity and
reduced hepatic lipids (106) it appears that hepatic lipids are the fat depot with the
highest responsiveness to exercise intervention. Moreover, endurance exercise
training is known to improve plasma lipoprotein and lipid profiles (42, 62, 75).
The reduction of the postprandial concentrations of plasma TG has been found
both after one single bout of acute exercise (2, 26, 37, 74) and after regular exer-
cise training (35, 44, 47, 69, 133). The contribution of distinct mechanisms lead-
ing to this hypotriglyceridemic effect of exercise is not completely understood,
but it is predominantly a decrease in the very low density lipoprotein (VLDL)-TG
fraction (13, 37, 75). This decrease has been attributed to an increased plasma
clearance rate of VLDL-TG (3, 101, 117) and a reduced VLDL-TG secretion
(116). The reduction of dyslipidaemia is, together with the anti-inflammatory
effect of exercise (93) important for lowering the risk of cardiovascular disease
(114). It has also been reported that increased physical activity could improve the
insulin sensitivity of the liver in humans leading to reduced hepatic glucose out-
put in the presence of insulin (22, 119), which might be related to the reduction in
liver fat and to the anti-inflammatory effect of exercise. Given the central role of
the liver in glucose and lipid metabolism and the putative pathological conse-
quences of a dysregulated liver function (for review (107)), it appears necessary
to consider the liver as an important exercise target and to elucidate the molecular
mechanisms activated by training intervention and acute exercise that are respon-
sible for the prevention or amelioration of hepatic dysregulation and thus help to
avoid impaired insulin action, hepatic steatosis, and cardiovascular disease.

IS THEACUTE STRESS RESPONSE TO EXERCISE ESSENTIAL FOR
THE BENEFICIAL HEALTH EFFECTS OF TRAINING INTERVENTIONS?
An often described but little understood feature of exercise is the acute and tran-
sient induction of oxidative, energetic and (in the working muscle) mechanical
stress (reviewed in (51, 82, 96)), while performing regular exercise is a successful
intervention to reduce low-grade systemic inflammation and to protect against
stress system dysregulation (93, 95).

The acute stress response in humans has mainly been studied in skeletal
muscle and peripheral mononuclear blood cells (PBMC). It includes the produc-
tion of reactive oxygen species (ROS) such as superoxide and nitric oxide and
other reactive nitrogen species (RNS) in the contracting muscle and in PBMCs
(83, 132) that act as signaling molecules to modulate signal transduction path-
ways and redox-sensitive gene transcription. Exercise-regulated and ROS-modu-
lated genes include antioxidant enzymes, DNA repair proteins and mitochondrial



electron transport proteins. Importantly, this occurs even if the work load is ade-
quate, e.g. during concentric exercise in trained people, and is not dependent on
muscular damage (15, 58). The stress response of the working muscle and of
PBMCs also includes the induction of heat shock proteins (HSP) (30, 78, 130),
which is mediated by oxidative stress and enhanced by glycogen depletion in the
muscle (29). Moreover, exercise activates – partially mediated by the ROS/RNS
production – mitogen-activated protein kinases (MAPK) and the transcription
factor NF-κB: Low intensity exercise leads to activation of the extracellular signal
regulated kinase (ERK)1/2 MAPKs in rodent and human skeletal muscle (6, 127)
and to a lesser extent to activation of p38 MAPK (40, 127). One-legged cycling
exercise induces MAPK phosphorylation in the exercised leg only, which sug-
gests the involvement of a local rather than a systemic factor (6, 127). Eccentric
exercise protocols also activate the c-Jun N-terminal kinase (JNK) pathway in the
working muscle (11, 12).

The stress-activated pathways are clearly important to induce a stress
defense including the upregulation of enzymes with antioxidative capacity and
DNA repair proteins. Beyond that, the data suggest that an adequate stress
response to physical activity is important to initiate essential adaptations to exer-
cise, not only to prevent tissue damage but also to improve exercise performance
and to achieve health benefits. The muscular stress response has been implicated
in the upregulation of enzymes and co-activators important for lipid and glucose
metabolism in rodents (1, 98, 118). Antioxidant treatment to reduce the exercise-
dependent oxidative stress depresses muscle force production (25, 99), prevents
training-induced adaptations in endurance performance and mitochondrial bio-
genesis (38) and abrogates improvements of insulin sensitivity (100) and cardio-
vascular parameters (129). This phenomen of “stress response hormesis” with
hormesis referring to the beneficial effects of a stimulus that at a higher intensity
is harmful (77) might also be important in the response of the liver to exercise. In
the following parts it will be shown that acute exercise induces a pronounced and
rapid activation of signaling pathways in the liver leading to a cellular stress
response.

THE HEPATIC RESPONSE TO EXERCISE TRAINING IN RODENTS
Animal models, particularly rodents, are widely used to investigate the molecular
mechanisms regulated by acute exercise or training interventions. Similar to
human studies, most reports have focussed on the skeletal muscle. Some groups
have investigated the effects of long-term exercise training over several weeks on
the hepatic gene expression in rodents (5, 24, 32, 67, 128), mostly performed with
obese or hyperglycaemic animals. These reports provide evidence not only for the
expected regulation of hepatic metabolic enzymes involved in glucose and lipid
metabolism, but also for an altered expression of signalling molecules such as
kinases and transcription factors and proteins involved in anti-oxidant defense in
the liver. Four weeks of regular running exercise of young, nonobese rats induced
the expression of p38 MAPK, inhibitory κB kinase β, and signal transducer and
activator of transcription (STAT)-3 (5). After ten weeks of running the hepatic
expression of superoxide dismutase and catalase in rat liver was found to be
upregulated which, however, was not paralleled by changes in enzyme activites
(128). Twelve weeks of swimming exercise normalized the expression of antioxi-
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dant genes or heat shock proteins in obese mice, which was dysregulated due to
high fat diet (67). Other studies investigated the effect of long-term exercise train-
ing on oxidative stress and mitochondrial function in the liver. Eight weeks of
treadmill exercise of rats increased the ratio of reduced to oxidized glutathione in
the exercised group (97). Moderate treadmill exercise from 28 to 52 weeks of age
in mice decreased the aging-related increase in oxidative stress markers in hepatic
mitochondria, prevented the decrease of antioxidant enzymes in the liver and the
reduction of the enzymatic activity of respiratory complex IV (80). Thus training
of rodents demonstrates a great impact of regular exercise performance on the
hepatic metabolism shown as altered hepatic gene expression, prevention of
hyperglycemia and hepatic steatosis (24, 67). But there is also clear evidence for
the regulation of anti-oxidative defense mechanism in the liver, similar to the data
obtained in skeletal muscle. Moreover, the data suggest an acute regulation of sig-
nal transduction pathways in the liver by exercise.

THE HEPATIC TRANSCRIPTIONAL RESPONSE TO
ACUTE EXERCISE IN RODENTS

Only few studies are available to date that investigated the acute response of the
liver to one single bout of exercise. It has been reported that acute exercise
reduces the expression of lipogenic enzymes in the liver of rodents (31, 41) and
upregulates the expression of the gluconeogenic enzymes glucose-6-phosphatase
and phosphoenolpyruvate carboxykinase (8), of adiponectin receptor 1, forkhead
box O1 (49), and peroxisome proliferator-activated receptor-γ coactivator (PGC)-
1α (8). A transient induction of HSP72 expression and synthesis of HSP72,
HSP73 and glucose-regulated proteins75 and 78 has been found in rat livers (39).

To obtain a more general view on the transcriptional events in the liver after
acute exercise we have performed treadmill exercise studies with mice and
applied whole genome expression analysis (45). The mice were 12 weeks of age
and untrained, but habituated to treadmill running. Immediately after one single
exercise bout of 60 min of non-exhaustive running, 536 transcripts in the liver
were differentially regulated more than twofold. 352 of them were upregulated
and 184 of them were downregulated. 37 hepatic transcripts were regulated more
than tenfold. In comparison, in the soleus muscle of the same mice, 162 tran-
scripts were differentially expressed more than twofold with more transcripts
downregulated than upregulated (90 vs. 72), and only 4 of them were altered more
than tenfold (Table 1a).

Analysis of the pathways mainly affected by the exercise-regulated gene
expression suggested a predominant regulation of genes important for glucose and
lipid metabolism, namely the metabolic pathways glycolysis, gluconeogenesis, fatty

increase decrease 

> 40-fold >10-fold >2-fold > 40-fold >10-fold >2-fold 

liver 3 22 352 2 10 184 

soleus muscle 0 1 72 1 2 90 

Table 1a. Sum of differentially expressed transcripts in liver and soleus muscle after acute
exercise (table adapted from (45)).



acid oxidation and synthesis (Table 1b) (46). Even more affected, at least as estimat-
ed from the number of differentially expressed genes, were signal transduction path-
ways, particularly the MAPK signalling pathway (Table 1b). Comparison of the

exercise-regulated expression of genes in liver and skeletal muscle after validation
by real-time PCR reveals four different groups of genes. Some of the genes, that
were strongly induced immediately after a single treadmill run in the liver, have no
relevant expression levels in skeletal muscle, e.g. insulin-like growth factor binding
protein (IGFBP)-1 and glucose-6-phosphatase (46). The expression of several genes
related to metabolic or signalling function was similarly induced in liver and skeletal
muscle, e.g. c-Fos, insulin receptor substrate (IRS)-2, angiopoietin-like-4, and pyru-
vate dehydrogenase kinase-4. Some were expressed in both, skeletal muscle and
liver, but only the hepatic expression was significantly upregulated, e.g. of
serum/glucocorticoid-regulated kinase (Sgk)1. Moreover, further studies including 3
h of recovery phase after the treadmill run revealed that the kinetics of exercise-
induced gene expression could be different in liver and skeletal muscle. The expres-
sion of the known exercise-responsive gene PGC-1α was induced in the liver imme-
diately after exercise, while a strong upregulation of skeletal muscle expression was
only found in the recovery phase (M. Hoene, C. Weigert, unpublished data). These
results indicate that the transcription of hepatic genes is highly responsive to a mod-
erately intense exercise bout, and this acute response appears to be more pronounced
than the response in the working skeletal muscle, at least than in the investigated
soleus muscle. Moreover, the quantification of the expression of hepatic genes
immediately after exercise and after 3 h of recovery reveals that the induction of the
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Pathway description Number of 

differentially 

expressed genes 

MAPK signaling pathway 16 

Cytokine-cytokine receptor interaction 8

PPAR signaling pathway 7

Insulin signaling pathway 7

Focal adhesion 6

Arachidonic acid metabolism 5

Toll-like receptor signaling pathway  5

Wnt signaling pathway 5

Adipocytokine signaling pathway 5

VEGF signaling pathway 5

Jak-STAT signaling pathway 4

Calcium signaling pathway 4

GnRH signaling pathway 4

Glycolysis/Gluconeogenesis 4

p53 signaling pathway 4

Axon guidance 4

Fatty acid metabolism 4

Table 1b. Predominantly regulated pathways in the liver after acute
exercise in descending order of the number of participating differen-
tially expressed genes (table adapted from (45)).
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majority of genes in the liver is rapid but transient and declines to values of seden-
tary mice in the first hours of the recovery phase.

ACTIVATION OF THE MAPK SIGNAL TRANSDUCTION PATHWAY
IN THE LIVER BYACUTE EXERCISE

The pathway analysis of the transcriptional response of the liver indicates a
pronounced activation of the MAPK signaling pathway. The upregulation of
the transcription factors c-Fos, c-Jun, FosB, and JunB, of growth arrest and
DNA-damage-inducible (GADD)45γ, and of DUSP1 and 6 was verified by
real-time PCR, and the induction of further target genes of MAPK was indicat-
ed by the whole genome expression analysis, e.g. MAPK activated protein
kinases 2 and 3 (Table 2) (45). Among the MAPKs tested we found a strong

phosphorylation of an ERK isoform and to a lesser extend of JNK (45). Phos-
phorylation of both was transient and not observable after 3 h of recovery
phase. The detected ERK isoform has an apparent molecular weight of 46-48
kDa and must differ in the C-terminal part from ERK1/2, since it is not recog-
nized by the ERK protein antibody used, which binds to the C-terminal part of
ERK1/2. The phosphorylation of this isoform was not detectable in any of the
muscle types studied, while ERK1/2 were not phosphorylated in the hepatic tis-
sue after exercise. This liver-specific regulation could be explained by the acti-
vation of DUSP isoforms found predominantly in the liver, which lead to the
dephosphorylation of ERK1/2 (90). Of note, a 46-48 kDa ERK isoform named
ERK1b appears not to be a good target for DUSP and can be activated despite
induction of the phosphatases (131). A further difference between the exercise-
induced activation of MAPKs in liver and muscle is that the phosphorylation of
MAPKs in the exercised muscle could also be observed in the early recovery phase,
when the phosphorylation of hepatic MAPK is no longer detectable (45, 79).

gene description change 

Gadd45g Growth arrest and DNA-damage-inducible 45 gamma I

Dusp8 Dual specificity phosphatase 8 I

Rasa2 RAS p21 protein activator 2 I

Dusp6 Dual specificity phosphatase 6 I

Fos FBJ osteosarcoma oncogene I

Mapk8 Mitogen activated protein kinase 8 I

Jun  Jun oncogene I

Il1b Interleukin 1 beta I

Hspa2 Heat shock protein 2 I

Dusp4 Dual specificity phosphatase 4 I

Mapkapk3 Mitogen-activated protein kinase-activated protein kinase 3 I

Mapkapk2 Mitogen-activated protein kinase-activated protein kinase 2 I

Ppm1b Protein phosphatase 1B, magnesium dependent, beta isoform D

Gadd45a Growth arrest and DNA-damage-inducible 45 alpha D

Rac2 RAS-related C3 botulinum substrate 2 D

Mapk11 Mitogen activated protein kinase 11 D

Table 2. Differentially expressed hepatic genes of the MAPK signaling pathway (table adapt-
ed from (45)).



ACTIVATION OF THE p53 PATHWAY IN THE LIVER BY
ACUTE EXERCISE

The pathway analysis of the hepatic transcriptional response points also to an
activation of the p53 pathway (Table 1b). The intracellular levels of the p53 tumor
suppressor protein are low in unstressed conditions and tightly regulated by ubiq-
uitin-proteosomal-dependent degradation. The activation of this pathway could be
confirmed by the increased abundance of the p53 protein and upregulation of the
target genes p53 inducible nuclear protein (trp53inp) and p21 (45). An exercise-
induced activation of p53 also occurs in rodent muscle, particularly after eccentric
exercise (17, 102). Further putative target genes of p53 were upregulated in the
liver after exercise, e.g. GADD45γ, Sgk1 and IGFBP-1 (45), although the specific
role of p53 herein needs to be evaluated. In this context it might be interesting to
consider the rapid and pronounced exercise-induced increase in hepatic IGFBP-1
levels. Since the upregulation of IGFBP-1 expression results in increased circulat-
ing IGFBP-1 protein concentrations in humans (48, 81) and rodents (4, 66) it has
been suggested that it may play a role in glucoregulation during exercise to neu-
tralize the insulin-like effects of IGF-1. A further function of the increased
expression of IGFBP-1 in the liver might be to upregulate the intracellular levels
of this protein as an antiapoptotic defense mechanism. It has been shown that
intracellular IGFBP-1 can bind to the protein BAK, thereby antagonizing the pro-
apoptotic function of this protein and protecting the liver from apoptosis (70).
This is discussed as one explanation for the surpassing resistance of the liver to
p53-induced apoptosis. Thus upregulation of IGFBP-1 during exercise might be a
feedback mechanism to prevent p53-induced apoptosis. Following this considera-
tion, the upregulation of hepatic IRS-2 during acute exercise (46) could also be
important not only for the regulation of hepatic glucose and lipid metabolism
post-exercise, but also for the anti-apoptotic defense of the liver. This function of
IRS-2 has been already suggested for the exercise-induced IRS-2 expression in
pancreatic beta-cells (89).

REGULATION OF JAK-STAT-3 SIGNALING IN THE
LIVER BYACUTE EXERCISE

Cytokine/Cytokine receptor signaling was also one of the most prominently regu-
lated pathways in the liver after acute exercise as shown by the pathway analysis
(Table 1b). Interleukin (IL)-1β, the receptors for the ciliary neurotrophic factor
(CNTF), for IL-11 and for leukaemia inhibitory factor (LIF) were found among
the upregulated genes (Table 3), but up to now we did not verify these results by
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gene description change 

Cntfr Ciliary neurotrophic factor receptor I

Il11ra1 Interleukin 11 receptor, alpha chain 1 I

Il1b Interleukin 1 beta I

Cxcl13 Chemokine (C-X-C motif) ligand 13 I

Lifr Leukemia inhibitory factor receptor I

Inhbe Inhibin beta E D

Cxcl1 Chemokine (C-X-C motif) ligand 1 D

Ccl1 Chemokine (C-C) motif ligand 1 D

Table 3. Differentially expressed hepatic genes of the cytokine/cytokine receptor pathway
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quantitative real-time PCR. Of note, CNTF, IL-11 and LIF belong to the IL-6-
type family of cytokines that lead to the activation of the JAK/STAT pathway and
upregulation of suppressor of cytokine signalling (SOCS)-3 (43). Another major
signal transduction pathway for these cytokines is the MAPK cascade. The best
studied IL-6-type cytokine in the context of physical activity is IL-6 itself, since
its plasma levels are increased after exercise due to its enhanced production and
secretion from the working muscle (28). A recent study describes the acute and
transient activation of the IL-6-dependent JAK/STAT-3 pathway in the liver after
exhaustive exercise (8). In our moderately intense exercise model we found also
evidence for the activation of STAT-3 and induction of its target gene SOCS-3 in
the liver. However, since we observed a similar upregulation of SOCS-3 in IL-6-
deficient mice (33) it is unclear whether IL-6 is responsible for the regulation of
this pathway in wildtype mice. Here, further research is needed to elucidate the
relevance of IL-6-type cytokine signalling (with IL-6 or other cytokines belong-
ing to this family as stimulus) for the activation of the hepatic stress response to
acute exercise.

IS OXIDATIVE STRESS THE TRIGGER FOR THE
HEPATIC STRESS RESPONSE?

Increased oxidative stress is discussed as an important stimulus for the induction
of cellular stress in the working muscle and it could also be involved in the regu-
lation of the different signalling pathways found to be activated after acute exer-
cise (82). Studies aiming to evaluate the effect of acute exercise on oxidative
stress in the liver determined parameters of increased generation of ROS such as
lipid peroxidation, thiobarbituric acid reactive substances (TBARS), and accumu-
lation of nuclear 8-hydroxydeoxyguanosine. These markers were found to be
increased after acute exercise or in the early recovery phase in some studies (27,
61, 72), but others did not detect evidence for oxidative stress in the liver (9, 85).
The upregulation of heat shock proteins in the liver after acute exercise has also
been suggested to be a consequence of oxidative stress (39, 103). The induction of
oxidative stress in the liver by endurance exercise might be influenced by nutri-
ents (109). In a recent study we fed a group of mice an antioxidant-rich diet over 4
weeks before the single bout of 60 min treadmill exercise (45). The activation of
c-Fos and GADD45γ mRNA expression and the phosphorylation of the hepatic
ERK isoform was similarly induced in both exercised groups independent of the
diet. Since we did not observe a clear upregulation of anti-oxidant enzymes met-
allotheonine-1, heme oxygenase-1, and superoxide dismutase-1 and-2 in either
exercised group, neither in mice fed the control diet nor in mice fed the anti-oxi-
dant-rich diet, our study could not answer the question whether acute exercise
induces oxidative stress in the liver. This might strongly depend on the intensity
and duration of the exercise bout. However, the study could clearly show that
oxidative stress is not the stimulus for the acute activation of the hepatic MAPK
signaling pathway by moderately intense exercise.

THE ROLE OF ENERGETIC STRESS IN THE
LIVER FOR THEACTIVATION OF MAPKAND p53 SIGNALING

The liver has an outstanding function during prolonged exercise since it supplies
glucose derived from glycogenolysis and gluconeogenesis for the working mus-



cle. Accordingly, glycogen concentrations in the liver significantly drop already
after 30 min of moderate treadmill running in mice (16), they are reduced to 50 %
of preexercise levels after intense, exhaustive exercise for 60 min (91, 92) and
hepatic glycogen is almost depleted after running till exhaustion for an average
running time of 84 min (16). Concomitantly, hepatic ATP concentrations
decrease, while AMP is increased, resulting in a moderate decrease in the hepatic
energy charge after short-term exercise and a marked decrease after exhaustive
exercise (16). Of note, the energy state of the gastrocnemius muscle was
unchanged in these mice, which is supported by a recent study that also did not
detect alterations of AMP, ADP and ATP nucleotide concentrations in the gastroc-
nemius muscle after a 60 min treadmill run of moderate intensity (68). The exis-
tence of energetic stress in the liver during exercise is also evidenced by the
enhanced phosphorylation and activation of theAMP-activated kinase (AMPK) in
this organ (16, 46, 57, 88).

Could the energetic stress be responsible for the hepatic transcriptional
response of the MAPK pathway and the p53 pathway to acute exercise? Exercise
of moderate intensity leads to slightly reduced plasma glucose levels and
decreased insulin levels, which result in a significant reduction of the
insulin/glucagon ratio (46, 65, 126). Peripheral glucagon concentrations are often
found not to be increased after exercise, but plasma glucagon concentrations do
not necessarily reflect the effective glucagon levels in the portal vein (124), and
the hepatic glucagon receptors might be exposed to higher concentrations during
exercise (125). Stimulation of these receptors increases cAMP levels, leading to
activation of protein kinase A, which subsequently activates ERK (52). Moreover,
a recent study could show for the first time that hepatic glucagon action regulates
the hepatic energy state and amplifies AMPK signalling (10). It thus appears like-
ly that the activation of glucagon receptors is implicated in the pronounced tran-
scriptional regulation of hepatic genes found after acute exercise, although a
causal relationship needs to be proven.

The energetic stress is also known to elevate plasma concentrations of cate-
cholamines, which could lead, via the activation of hepatic adrenergic receptors,
to MAPK activation (18). While the question whether or not catecholamines are
involved in the exercise-induced gene expression in the liver has not been
addressed yet, strategies designed to specifically investigate the function of hepat-
ic adrenergic stimulation in the activation of hepatic glucose output during exer-
cise, e.g. hepatic adrenoreceptor blockade in dogs (20), or inhibition of hepatic
innervation in rats (120) or humans (60) do not support an important role for cate-
cholamines herein. Of course this does not exclude the possibility that hepatic
innervation is involved in the activation of hepatic MAPK signalling during exer-
cise.

Moreover, evidence exists that the fall in plasma glucose concentrations has
stimulatory effects on the liver independent of pancreatic hormones and of cate-
cholamine action leading to enhanced glucose output (19, 21). The results
obtained in these studies suggest that either a yet to be determined signal related
to the fall in plasma glucose or the decrease in glucose concentrations per se reg-
ulates the hepatic response to exercise. Of note, in our recent study we could show
that lower plasma glucose levels are related to increased expression not only of
well-known responders to hepatic energy depletion, e.g. IGFBP-1 (4, 66), but also
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of genes encoding
MAPK signalling pro-
teins in the liver (45).
In the same study, this
correlation was not
found for stress
response genes in the
soleus muscle.

Recent investi-
gations also relate the
activation of the p53
pathway to energy
depletion and limited
carbohydrate avail-
ability (76). It has
been shown that
AMPK-dependen t
phosphorylation of
p53 leads to the stabi-
lization of p53 protein
(55) and that activa-
tion of AMPK induces
the expression of p53

(86). Thus clear indication exists that energetic stress, the existence of which is
detectable in the liver during moderately intense exercise (16, 68), is a major
stimulus for the activation of cellular stress response-related pathways in this
organ (Fig. 1).

IS THE ENERGETIC STRESS FOR THE LIVER DURING EXERCISE
COMPARABLE IN HUMANSAND RODENTS?

The evidence for a high responsiveness of the liver to acute exercise and the role
of hepatic energy depletion in the transcriptional adaptation is mainly based on
rodent studies. In humans, the liver has a comparably unique function and is the
primary source of glucose for the working muscle (for review (121)). There is
also clear evidence in humans for hepatic glycogenolysis during physical activity
(94, 122) and for a fall in plasma glucose concentrations during strenuous and
long-lasting exercise (115). However, it has been suggested from data on glyco-
gen depletion in liver and muscle that hepatic glycogen stores and availability
might be more important for exercise capacity in rodents than in humans (7, 112).
Mice store more glycogen in the liver than in the skeletal muscle, while the oppo-
site is true in humans due to the difference in the relative contribution of muscle
and liver mass to total body weight in mice and humans (50). Genetically modi-
fied mice lacking muscle glycogen or with excess of muscle glycogen have nor-
mal exercise capacity (91, 92), while depletion or ineffective utilization of muscle
glycogen in humans leads to impaired exercise tolerance (56, 71). It may well be
that the rodent liver is more affected by energetic stress during moderately intense
exercise than the liver of humans, but it is difficult to compare the intensity of
exercise applied to humans and rodents. Moreover, hepatic glycogen depletion

plasma glucose �
insulin/glucagon �

glycogen �
AMP/ATP �

PKA 
AMPK 
ERK 
p53 

Transcriptional response of genes of the 
MAPK signaling pathway 
p53 pathway 
IL-6-type cytokine pathway 

cellular stress defense 
 
metabolic adaptations?

Fig. 1. Relationship of energetic stress in the liver induced by
acute exercise and the transcriptional regulation of stress
response-related signaling pathways



and hypoglycaemia is also found in humans after prolonged and intense exercise,
and the human liver is highly responsive to exercise interventions. Therefore it
could be expected that the relationship of energetic stress and the subsequent
induction of transcriptional and posttranslational adaptive mechanisms in the liver
is not only true for rodents, but also for humans.

CONCLUDING REMARKS

Investigation of the molecular events that occur in the liver of rodents during and
after exercise has just begun. The data available thus far describe the liver as an
intensely affected organ during non-exhaustive exercise. This is evidenced by the
activation of several signal transduction pathways and a marked transcriptional
response. Many of the regulated pathways and genes have also been described as
part of the exercise response of the working muscle, although the intensity and the
kinetics of this response may vary between the tissues. Energetic stress during
physical exercise appears to be an important determinant for the induction of
hepatic genes, but not for those in the soleus muscle. A major challenge for future
research will be to elucidate the relevance of the hepatic stress response for the
beneficial metabolic adaptations of the liver to regular physical activity.
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IRS, insulin receptor substrate;
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JNK, c-Jun N-terminal kinase; MAPK
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PGC-1α, peroxisome proliferator-activated receptor-γ coactivator-1α;
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