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ABSTRACT

Both a systemic inflammatory response as well as DNA damage has been obser-
ved following exhaustive endurance exercise. Hypothetically, exercise-induced
DNA damage might either be a consequence of inflammatory processes or causal-
ly involved in inflammation and immunological alterations after strenuous pro-
longed exercise (e.g. by inducing lymphocyte apoptosis and lymphocytopenia).
Nevertheless, up to now only few studies have addressed this issue and there is
hardly any evidence regarding a direct relationship between DNA or chromoso-
mal damage and inflammatory responses in the context of exercise. The most con-
clusive picture that emerges from available data is that reactive oxygen and nitro-
gen species (RONS) appear to be the key effectors which link inflammation with
DNA damage. Considering the time-courses of inflammatory and oxidative stress
responses on the one hand and DNA effects on the other, the lack of correlations
between these responses might also be explained by too short observation peri-
ods. This review summarizes and discusses the recent findings on this topic. Furt-
hermore, data from our own study are presented that aimed to verify potential
associations between several endpoints of genome stability and inflammatory,
immune-endocrine and muscle damage parameters in competitors of an Ironman
triathlon until 19 days into recovery. The current results indicate that DNA effects
in lymphocytes are not responsible for exercise-induced inflammatory responses.
Furthermore, this investigation shows that inflammatory processes, vice versa, do
not promote DNA damage, neither directly nor via an increased formation of
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RONS derived from inflammatory cells. Oxidative DNA damage might have been
counteracted by training- and exercise-induced antioxidant responses. However,
further studies are needed that combine advanced –omics based techniques (tran-
scriptomics, proteomics) with state-of-the-art biochemical biomarkers to gain
more insights into the underlying mechanisms. 

Key words: DNA damage, systemic inflammatory response, lymphocytopenia,
muscle inflammatory responses, endurance exercise

INTRODUCTION

Due to extensive research in the past decades, the effects of exercise on the
immune system are well documented [20, 33, 53]. However, researchers in this
area are still puzzled by questions about the underlying molecular mechanisms of
the observed immunological alterations [32, 33]. Extremely demanding
endurance exercise has been shown to induce both a systemic inflammatory
response [15, 42, 53, 71] as well as DNA damage [21, 36, 58, 62, 80]. Exercise-
induced DNA damage in peripheral blood cells appear to be mainly a conse-
quence of an increased production of reactive oxygen and nitrogen species
(RONS) during and after vigorous aerobic exercise [58]. Besides oxidative stress,
other factors such as metabolic, hormonal and thermal stress in addition to the
ultra-structural damage of muscle tissue are characteristic responses to prolonged
strenuous exercise, that can lead to the release of cytokines, acute phase proteins
and to the activation or inhibition of certain lines of the cellular immune system
[15, 29]. In addition to these effectors, exercise-induced modifications in DNA of
immuno-competent cells have been hypothesised to be related with immune and
inflammatory responses to prolonged intensive physical activity, either by playing
a causative role and/or by resulting from exercise-induced inflammatory process-
es [21, 40, 44, 53]. Nevertheless, both experimental data as well as a more mech-
anistic understanding regarding this relationship are still incomplete. 

The aim of this review is to outline the findings and current state of knowl-
edge on potential associations between DNA modulations and inflammatory
responses after exercise. In the first part of this article, a short description of the
most commonly applied techniques to evaluate genome stability is provided. This
is followed by a brief summary of studies that have investigated the effects of
exercise on DNA in general. The latter issue has been presented elsewhere in
detail with a focal point on methodology in an article by Poulsen et al. [58]. In the
second part of this review the focus is on studies that have investigated both, cer-
tain endpoints of DNA damage and immuno-endocrine and inflammatory param-
eters in the context of exercise. Since apoptosis (programmed cell death) has been
suggested to influence the regulation of leukocyte counts after exercise [53], we
also addressed studies on this topic in the present review. Furthermore, we includ-
ed the few investigations that examined exercise-induced DNA modulations and
markers of muscle damage, since this issue might give some indirect evidence for
inflammatory processes following exercise. Finally, data from our own study is
presented, which aimed to get a broader and more thorough insight into oxidative
[43], myocardial [28], skeletal muscular, inflammatory and immuno-endocrine
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stress responses [42] as well as genome stability [62, 63] in a large cohort of Iron-
man competitors. By investigating a range of divergent parameters and by quanti-
fying the resolution of recovery up to 19 days (d) after the Ironman race, the
results specifically enabled us to verify potential interactions between several
endpoints of DNA and chromosomal damage on the one hand and inflammation
and muscle damage on the other hand.

Commonly Applied Techniques to Monitor DNA and Chromosomal Stability
in Exercise 
A number of different approaches have been used to evaluate DNA stability in
exercise studies. The aim of this part of the present article is to give a brief
overview on the principles of the most frequently applied methods, since this
topic has been comprehensively reviewed in the scientific literature [8, 17, 26,
58].

Many studies in this context applied the single cell gel electrophoresis
(SCGE or COMET) assay due to its sensitivity and simplicity [8]. This technique
is based on the determination of the migration of damaged DNA out of the nucle-
us in an electric field, whereas the migrated DNA resembles the shape of a comet
[21, 26]. The standard version (under alkaline conditions) enables the detection of
DNA single and double strand breaks, and apurinic sites [77], while the use of the
lesion specific enzymes endonuclease III (ENDO III) and formamidopyrimidine
glycosylase (FPG) allows the detection of oxidized purines and pyrimidines,
respectively [7, 8]. Regarding the interpretation of the results that are obtained by
the SCGE assay it is important to bear in mind that endpoints are differently
reported as tail lengths of the comets, percentage DNA in tail and tail moment [8]. 

Contrary to the SCGE assay, the cytokinesis block micronucleus cytome
(CBMN Cyt) assay allows to assess persistent chromosomal damage [16, 21].
Endpoints of this precise method includes the formation of micronuclei (MN)
resulting from chromosomal breakage or loss, nucleoplasmic bridges (NPBs)
indicating chromosome rearrangements, and nuclear buds (Nbuds) that are
formed as a consequence of gene amplification [16, 18]. The reliability of this
MN in pathophysiological conditions has been substantiated by a recent study
which has shown an association between MN frequency and cancer incidence [3].

In several exercise studies 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG),
was investigated, which is formed through oxidative modification of guanine, and
mainly detected in urine or in leukocytes [26]. Measurement of urinary 8-oxodG
is thought to be the result of the repair of these lesions in DNA, excretion into the
plasma and subsequently into urine [58]. Hence, it does not necessarily reflect the
steady-state of un-repaired DNA damage [80]. Moreover, urinary 8-oxodG repre-
sents a general oxidative damage marker for the whole body, and consequently, is
not specific to DNA damage in white blood cells [60, 80]. Attention should also
be given in the interpretation of this biomarker due to methodological drawbacks
and discrepancies among divergent approaches which are currently used to
analyse 8-oxodG [26, 58].

Effects of Different Kinds of Exercise on DNA
Epidemiological as well as empirical data indicate protective effects of physical
activity on site-specific cancer risk [58, 64, 76]. However, similarly to the con-
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cerns about ultra-endurance exercise and cardiovascular health [27], Poulsen et al.
hypothesised a U-shaped curve relationship between exercise and health particu-
larly in the context of oxidative DNA modifications [58]. Data are available now
on the effects of acute bouts of very prolonged (ultra-endurance) exercise on
genome stability, which will also be presented in the following overview. Accord-
ing to the literature [10], ultra-endurance is defined as exercise lasting more than
4 hours (h). 

Ultra-endurance Exercise (> 4 h)
Increased DNA instability as detected by the SCGE technique [36, 63] or with the
CBMN Cyt assay [62] or by analysis of urinary 8-OHdG concentrations [37, 60]
were found after an Ironman triathlon [62, 63] and ultra-marathon races [36, 37,
60]. Importantly, changes regarding the SCGE assays as well as urinary 8-OHdG
were only temporary [36, 37, 60, 62, 63] and endpoints of DNA damage meas-
ured with the CBMN Cyt assay even decreased in response to an Ironman race
and declined further 19 d post-race [62]. These responses are discussed later in
detail within the scope of our own observations. 

Competitive Endurance Exercise (< 4 h)
Data regarding competitors of endurance races with a duration of less than four
hours are partly inconclusive, albeit in most studies increased DNA migration was
detected in SCGE assays after a half-marathon [44], a marathon [80] or a short-
distance triathlon race [21]. On the contrary, neither changes in the levels of
strand breaks nor in the FPG-sensitive sites, but increased ENDO III sites were
observed after a half-marathon- and a marathon [4]. However, the subjects of the
latter study were monitored only immediately post-race, while other investiga-
tions demonstrated that major DNA modulations were sustained until 5 d post-
race in six short-distance triathletes [21] and for even 14 d following a marathon
[80]. Nevertheless, based on the finding of an unaltered frequency in MN, Hart-
mann et al. [21] concluded that intense exercise with a mean duration of 2.5 h
does not lead to chromosome damage.

Submaximal and Maximal Exercise Under Laboratory Conditions
Several studies conducted submaximal aerobic exercise protocols under laborato-
ry conditions to investigate DNA effects. DNA damage was neither seen after
intense treadmill running in male subjects of different training status [82] nor in
well-trained endurance athletes [54]. In addition, Sato et al. showed that acute
mild exercise as well as chronic moderate training does not result in DNA dam-
age, but rather leads to an elevation in the sanitization system of DNA damage
[66]. Interestingly, in an experiment that aimed to examine the influence of a
downhill run before and after supplementation with vitamin E, no effect was
found on the levels of leukocyte 8-OHdG in both 16 young and 16 older physical-
ly active men [65]. However, it has to be mentioned that DNA responses were not
followed until at least 1 d post-exercise in most of these studies [54, 65, 82]. 

Conflicting findings were reported when maximal exercise protocols, i.e. tests
until exhaustion, were conducted under laboratory conditions. Increased levels of
DNA strand breaks were observed after exhaustive treadmill running in subjects of
different training status [22, 45]. Moller et al. [38] demonstrated DNA strand breaks
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and oxidative DNA damage after an maximal cycle ergometer test under high-
 altitude hypoxia, but not normal (normoxic) conditions. In another study, elevated
levels of MN were reported after exhaustive sprints; however, the six subjects were of
divergent training levels and gender and included one smoker [67]. On the contrary,
Pittaluga et al. [56] detected no effects of a maximal exercise test on MN in 18 young
subjects with different training status, but the authors noted chronic cellular stress
including higher MN levels at rest in the athlete group. Furthermore, there were no
differences in urinary 8-OHdG concentrations before and after supplementation with
β-carotene within the 3 d following a cycle ergometer test to exhaustion [70].

Periods of intensified training
A few studies have examined whether periods of intensified training affect
genome stability. Increased urinary 8-OHdG levels were observed in 23 healthy
males in response to a vigorous physical training programme (about 10 h of exer-
cise for 30 d) [57] and in male long-distance runners throughout a training period
for 8 d compared to a sedentary period [47]. However, in a longitudinal study no
differences in urinary excretion of 8-OHdG between a group of long-distance run-
ners and a sedentary control group were observed [55]. In two separate studies
that comprised a similar group of male triathletes, Palazzetti et al., reported either
no [48] or increased DNA damage [49] after 4 weeks (wk) of overload training as
detected by the SCGE assay, probably due to inter-individual differences.

In conclusion, there is growing evidence that strenuous exercise can lead to DNA
damage that with few exceptions [36] is predominantly observed not before 24 h
after the resolution of exercise [21, 44, 45, 80]. However, the diversity of methods
and endpoints used to assess DNA modifications and different study designs (i.e.
divergent exercise protocols and sampling time-points) make it difficult to deter-
mine the exact circumstances under which DNA damage occurs. Crucially, in
addition to the aforementioned factors, the heterogeneity of study cohorts (vary-
ing in gender, age and training status) most likely contributes to inconsistencies
among the studies on this topic. Nevertheless, results of the few studies that have
examined the effects of ultra-endurance exercise on genome stability indicate that
adaptations of endogenous protective antioxidant and/or repair mechanisms pre-
vent severe and persistent DNA damage in well-trained athletes [36, 37, 45, 60,
62]. Thus, a clear dose-response relationship regarding the level of exercise that
could be detrimental cannot yet be established. Currently, there are no indications
that exhaustive endurance exercise increases the risk for cancer and other diseases
via DNA damage. However, it remains to be clarified whether perturbances of the
genomic stability of immuno-competent cells are involved in the post-exercise
temporary dysfunction of certain aspects of immunity, which may increase the
risk of subclinical and clinical infection [15, 20, 53]. 

Findings on Exercise-induced DNA Damage and/or Apoptosis and
 Inflammatory Responses
Table 1 summarizes the small number of studies that have examined the effects of
exercise on DNA and/or apoptosis on the one side and inflammatory responses on
the other. As one of the earlier works in the context of the effects of particularly
competitive endurance exercise on DNA damage, Niess et al. [44] found that neu-
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trophil counts 1 h after a half-marathon run correlated with DNA damage in
leukocytes, assessed 24 h post-race. Without examining markers of oxidative
stress, the authors could only speculate that RONS released by neutrophils might
have been responsible for the formation of DNA strand breaks. However, their
results led them to suppose that the observed DNA damage might be the key
mechanism for the modifications in the immune cell counts [44]. On the contrary,
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they found no correlation between changes in DNA migration in the SCGE assay
and leukocyte counts in the 24 h after an exhaustive treadmill test [44], possibly
also because the extent of the inflammatory response was relatively low following
their exercise protocol. Although no immune and inflammatory parameters were
measured in the study by Hartmann et al. [21], their explanations have further
stimulated debate on a relationship between the activation of inflammatory cells
and the occurrence of secondary tissue and DNA lesions. Based on their observa-
tions in short-distance triathletes (no indications for oxidative DNA modifications
immediately post-race, but highest values within the standard SCGE assay 3 d
after the competition), they suggested that DNA damage might occur as a conse-
quence of exercise-induced injury of muscle tissue rather than acute oxidative
stress during exercise [21]. The authors hypothesised that inflammatory reactions
in the course of this initial muscle damage could be responsible for the transient
DNA damage [21]. Indeed, there is evidence that activated neutrophils and
macrophages infiltrate damaged muscle [68, 78]. Although this seems to be a ben-
eficial response in terms of muscle repair and also muscle adaptation [33, 78], it
may trigger further inflammatory processes and damage [25], in part through an
enhanced formation of RONS [29]. 

On the basis of these findings, researchers in this field questioned whether
damage to cellular DNA in the course of vigorous exercise could also induce
apoptosis and whether programmed cell death, in turn, might be related to the
exercise-induced regulation of leukocyte counts and, particularly, lymphocyte
trafficking and distribution [53]. A decline of the total lymphocyte concentration
is characteristic after exercise of prolonged duration and/or high intensity [33,
53]. Although the mechanisms of exercise-induced lymphocytopenia are still not
fully understood [33], it has been suggested that this effect may account, at least
partly, for the post-exercise immune dysfunction [15]. Exercise-induced changes
in corticosteroids and catecholamines are known to play a major role in character-
istic post-exercise alterations of leukocyte subsets [20, 41] including leukocytosis
[42] as well as lymphocytopenia [53]. Previous studies indicated that the gluco-
corticoid concentrations observed after submaximal exercise are sufficient to
induce apoptosis [23]. These observations further support the assumption of a
relationship between exercise-associated induction of apoptosis and lymphocy-
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topenia [53]. In response to cellular stressors that lead to DNA damage, apoptosis
is vital in preventing the propagation of severely damaged DNA and in maintain-
ing genomic stability [30] and is regarded to be required for the regulation of the
immune response [39]. 

Mars et al. were the first to describe apoptosis in lymphocytes after exhaus-
tive exercise (treadmill running) that was paralleled by DNA damage [34]. How-
ever, in the latter study, cell death was only investigated in three subjects and the
methodology (the TdT-mediated dUTP-nick end labelling or TUNEL method)
has been criticized due to its insufficient specificity [40]. Nevertheless, by the use
of flow cytometry and annexin-V to label apoptotic cells, Mooren et al. [39, 40]
confirmed that either short maximal exercise (in untrained subjects) [39] as well
as competitive endurance exercise (a marathon run) [40] has the potential to
induce lymphocyte apoptosis. This phenomenon could be explained, to a certain
extent, by an up-regulation of the expression of cell death receptors and ligands
[40] and an exercise-induced shift to a lymphocyte population with a higher den-
sity of these (CD95-)receptors [39]. Nevertheless, the authors concluded that the
changes in the proportions of apoptotic cells after exhaustive exercise were small
and, if at all, might only partially account for the concomitantly observed signifi-
cant decline of lymphocytes to below baseline levels [39]. An additional finding
of Mooren et al. [40] was that apoptotic sensitivity was inversely related to the
training status of the marathon runners, since analysis of subgroups revealed that
programmed cell death occurred only in less well-trained, but not in highly-
trained athletes. Recent research in this context suggests that intensive endurance
exercise does neither automatically induce apoptosis in lymphocytes nor cause
DNA damage (assessed immediately and 3 h post-exercise), provided that sub-
jects are well-trained [54]. Since there was no correlation between the (non-sig-
nificant) decrease in circulating lymphocytes and the percentage lymphocyte
apoptosis after a 2.5 h treadmill run at 75% VO2 max., Peters et al. [54] concluded
that the characteristic post-exercise lymphocytopenia is not due to apoptotic regu-
lation by the immune system. The latter results are consistent with another study
which was conducted with a similar exercise protocol, but in untrained subjects
[69]. Steensberg et al. [69] noted that the lymphocytes which left the circulation
during the first 2 h post-exercise were characterised by not being apoptotic. Thus,
mechanisms other than apoptosis seem to play a more important role in inducing
lymphocytopenia after exercise, including a redistribution of lymphocytes and/or
a lack of mature cells that can be recruited [53]. Moreover, contrary to previous
findings [23], recent results imply that cortisol affects the cellular immune system
more by other pathways than via apoptotic regulation [54]. Furthermore, the
occurrence of DNA damage in the course of exercise does not necessarily impli-
cate induction of apoptosis [40]. Alternative cellular outcomes to prevent the
propagation of DNA damage include cell cycle arrest or DNA repair [30].

In general, there is strong evidence which suggests that enhanced DNA sta-
bility and, most likely in turn, the absence of a change in the levels of apoptotic
lymphocytes after strenuous exercise [54] are associated with protective adapta-
tions due to training. As mentioned above, Mastaloudis et al. [36], reported that
DNA damage in leukocytes increased temporarily mid-race of an ultra-marathon,
but returned to baseline 2 h after the competition and even decreased to below
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baseline values by 6 d post-race. As probable causes for this decrease in the pro-
portion of cells with DNA damage, the authors suggested enhanced repair mecha-
nisms, increased clearance and/or a redistribution of damaged cells [36]. Notewor-
thy, plasma concentrations of inflammatory parameters, F2-isoprostanes and
antioxidant vitamins were investigated in the same subjects. Although acute oxida-
tive and inflammatory stress responses were observed [35], the authors reported no
correlations between either of these markers with DNA damage [35, 36]. Further-
more, supplementation with vitamins E and C prevented increases in lipid peroxi-
dation [35], but had no noticeable effects on DNA damage, on inflammation and
on muscle damage [36]. Interestingly, there were different responses regarding
oxidative stress and DNA damage in male and female runners, highlighting the
importance of studying both sexes [35, 36]. In general, these findings in ultra-
marathon runners indicate that the mechanism of oxidative damage is operating
independently of the inflammatory and muscle damage processes [35, 36, 79]. 

There are only few studies on the issue of DNA damage and immune and
inflammatory responses in the course of exercise. Briviba et al. [4] found oxida-
tive DNA damage parallel to an increased oxidative burst ability of granulocytes
and monocytes after both a half-marathon- and a marathon race, but no correla-
tions were detected. Again, the authors could only speculate that the exercise-
induced activation of phagocytes might have contributed to the increased RONS
production, oxidative DNA damage and the high percentage of apoptotic lympho-
cytes [4]. Furthermore, it is notable that the monitoring period of this study prob-
ably was too short to detect possible interactions between DNA alterations and
immune modifications. 

Findings on Exercise-induced DNA Damage and Muscle Damage 
As mentioned, given the scarceness of data regarding associations between DNA
modulations and inflammation in the course of exercise, we included investiga-
tions that examined exercise-induced effects on DNA together with markers of
muscle damage. These studies are summarized in Table 2. Though several major
stressors are needed and the integrity of the organism has to be challenged (e.g.
by extremely demanding endurance exercise) [29, 42, 53, 72] to induce a systemic
inflammatory response, it has been shown that leukocytes can explicitly be
mobilised in response to muscle damage [42, 51, 74], possibly due to activation of
the alternative complement pathway [51, 74]. Therefore, these studies may also
reveal whether muscle damage (induced by mechanical and/or metabolic stress
[25, 75]) and subsequent repair and inflammatory responses [78] are associated
with DNA damage. In one of the first studies on this issue, which comprised three
subjects of different gender and training history, Hartmann et al. reported a paral-
lel increase, but no correlation between the DNA migration in the SCGE assay
and plasma creatine kinase (CK) between 6 and 24 h after intense treadmill run-
ning [22]. Likewise, applying the standard SCGE assay, Palazzetti et al. [48]
observed signs of increased oxidative stress and muscle damage induced by a
duathlon race after 4 wk of overload training, whereas no effects on leukocyte
DNA were found, probably due to efficient DNA repair. Other studies on this
topic predominantly measured 8-OHdG in urine, which reflects the average rate
of oxidative DNA damages in all cells of the body [58]. Consequently, changes in
urinary 8-OHdG excretion after muscle-damaging exercise might largely repre-
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sent DNA damage of skeletal muscles [60]. Radak et al. [60] and Miyata et al.
[37] determined urinary 8-OHdG levels and markers of muscle damage in com-
petitors of ultra-marathon events which lasted 2 [60] and 5 d [37], respectively.
No propagation of oxidative DNA damage was observed after the first race d in
both studies [37, 60]. Interestingly, 8-OHdG significantly decreased to levels
below their peak values during the race on the second d [37], and on the fourth
race d [60], respectively. Both research groups suggested that a rapid induction of
antioxidant and repair systems occurred [37, 59]. In contrast, parameters for mus-
cle damage continuously increased during the 2-d-race period [37] and until the
third d of the 4-d-race [60], and no correlations were reported with 8-OHdG.
Taken together, these data may show that, even if myofibrillar injury occurs, an
adaptive up-regulation of repair and nucleotide sanitization mechanisms is capa-
ble of preventing further damage of DNA. Consistently, no correlations between
biomarkers of DNA- and muscle damage were reported after a period of intensi-
fied training (despite that both 8-OHdG and muscle damage markers were found
to be increased) [47] or downhill running on a treadmill [65]. However, given that
8-OHdG levels remained unchanged, but were measured only until 1 d post-race,
the authors of the latter investigation noted that oxidative DNA damage probably
had occurred in the period between the first and the third d after exercise, when
some links amongst circulating oxidative stress markers and CK activity were
observed [65]. 

The prolonged monitoring period after a marathon race in an investigation
by Tsai and co-workers [80] might account for the observed significant correla-
tions between peak levels of ENDO III-sensitive sites and urinary 8-OHdG on
the one side and plasma parameters of muscle damage and lipid peroxidation on
the other. In agreement with the conclusions of previous investigations [21, 44],
the authors suggested that inflammatory cells infiltrating into injured skeletal
muscle tissue and activated phagocytes were responsible for the increased pro-
duction of RONS and consequently the delayed oxidative DNA damage during
the reparative processes after the marathon [80]. This idea is supported by a
study in rats, in which DNA damage in circulating white blood cells was closely
related to muscle damage due to exercise [81]. Nevertheless, based on these find-
ings it is not possible to draw a clear conclusion as to whether oxidative DNA
modifications in peripheral immuno-competent cells are casually related with
immune disturbances or whether DNA damage in leukocytes, in fact, results
from oxidative stress that occurs through inflammatory processes after strenuous
exercise.

Purpose of the Current Study in Ironman Triathletes
The data presented here are part of a larger study that aimed to comprehensively
examine certain stress and recovery responses to an Ironman triathlon race. One
primary aim of the study was to test the hypothesis whether there is a relationship
between indices of muscle damage and/or inflammatory stress and endpoints of
DNA damage in lymphocytes, which were assessed by the SCGE- and the CBMN
Cyt assays for the first time in the course of competitive exercise of such duration.
Furthermore, by concomitantly exploring oxidative stress markers and antioxi-
dant-related factors, we aimed to particularize a potential interaction of oxidative
stress between inflammatory and DNA responses. 
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MATERIALS AND METHODS

The study design has been described previously [28, 42]. Briefly, the study popu-
lation comprised 48 non-professional, well-trained healthy male triathletes, who
participated in the 2006 Ironman Austria. Forty-two of them (age: 35.5 ± 7.0 yr,
height: 180.6 ± 5.6 cm, body mass: 75.1 ± 6.4 kg, cycling VO 2 peak: 56.6 ± 6.2 ml
kg -1 min -1, weekly net endurance exercise time: 10.7 ± 2.6 h) completed the
study and were included in the statistical analysis to investigate inflammatory and
immuno-endocrine responses as well as muscle damage [42]. The physiological
characteristics of the study participants (assessed on a cycle ergometer three
weeks before the competition), information on their training over a period of six
months prior to the race, their performance in the Ironman triathlon as well as the
only moderate (“recovery”) training thereafter have been presented in detail else-
where [42, 43]. Of the entire study group 20 and 28 subjects were randomly
selected for the CBMN Cyt and the SCGE assays, respectively [62, 63]. Conse-
quently, these randomized subjects were included in the data analysis for the
results that are exclusively provided within this report. All participants of the
study did not take any medication or more than 100% of RDA of antioxidant sup-
plements (in addition to their normal dietary antioxidant intake) in the six weeks
before the Ironman race until the end of the study. The Ironman triathlon took
place in Klagenfurt, Austria on July 16th 2006 under near optimal climatic condi-
tions and consisted of 3.8 km swimming, 180 km cycling and 42.2 km running.
Blood samples were taken 2 d pre-race, immediately (within 20 min), 1, 5 and 19
d post-race. 

The samples were immediately cooled to 4°C and plasma separated at 1711
* g for 20 min at 4°C and aliquots for the measurement of biochemical parameters
were frozen at –80°C until analysis. For the analysis of DNA and chromosomal
damage in lymphocytes, blood samples were processed instantly as described pre-
viously [62, 63]. Blood samples were analysed for haematological profile, plasma
creatine kinase (CK) activity, plasma concentrations of myoglobin, interleukin
(IL)-6, IL-10, high-sensitivity C-reactive protein (hs-CRP), myeloperoxidase
(MPO), polymorphonuclear (PMN) elastase, cortisol and testosterone (see [42]).
All these values (except for the steroid hormones) were adjusted for exercise-
induced changes in plasma volume [11]. As reported previously [62, 63], the
SCGE and CBMN Cyt- assays were carried out according the methods described
by Tice et al. [77] and Fenech [17], respectively. Within the SCGE-assay, oxida-
tive DNA base damage was assessed on the basis of the protocols of Collins et al.
[7], Collins and Dusinska [6] and Angelis et al. [1]. Analysed endpoints within the
SCGE assay included: 1.) determination of DNA migration under standard condi-
tions to measured single and double strand breaks (determined as percentage of
DNA in the tail), and 2.) ENDO III and FPG to detect oxidized pyrimidines and
purines, respectively. Biomarkers within the CBMN Cyt block included the num-
ber of 1.) MN, 2.) NPBs, 3.) Nbuds, and 4.) necrotic and apoptotic cells.

All statistical analyses were performed using SPSS 15.0 for Windows.
Details of the data analysis has been presented previously [42, 62, 63]. For the
additional correlation analysis that is reported in this article, Pearson ´s correla-
tion was used to examine significant relationships. In case of observed trends or
significant correlations, subjects were divided into percentile groups by the asso-

62 •   Exercise-induced DNA damage and inflammatory responses



ciated variables (e.g. IL-6). One-factorial ANOVA and post hoc analyses with
Scheffé´s test were then applied to assess whether differences in endpoints of
DNA or chromosomal damage were associated with the percentile distribution.
Significance was set at a P-value <0.05 and is reported P<0.05, P<0.01 and
P<0.001.

RESULTS

Race Results
The average completion time of the whole study group was 10 h 52 min ± 1 h 1
min (mean ± SD). The estimated average antioxidant intake during the race was
393 ± 219 mg vitamin C and 113 ± 59 mg alpha-tocopherol. There were neither
significant differences in the performance nor in the consumed antioxidants
between the whole study group and the subgroups that were tested for genome
stability.

DNA and Chromosomal Damage, Apoptosis and Necrosis
As previously reported [62, 63] and briefly discussed above, the results concern-
ing DNA and chromosomal damage were as follows: Within the CBMN Cyt
assay, the number of MN significantly (P<0.05) decreased immediately post-race,
and declined further to below pre-race levels 19 d after the Ironman competition
(P<0.01). There were no changes in the frequency of NPBs and Nbuds as an
immediate response to the triathlon, but 5 d thereafter the frequency of Nbuds was
significantly (P<0.01) higher than levels immediately post-race. However, 19 d
post-race the frequency of Nbuds returned to pre-race levels, while the number of
NPBs was significantly (P<0.05) lower than pre-race [62].

The overall number of apoptotic cells decreased significantly (P<0.01)
immediately post-race, and declined further until 19 d after the race (P<0.01).
Similarly, the overall number of necrotic cells significantly (P<0.01) declined
immediately post-race, and remained at a low level 19 d after the Ironman. Within
the SCGE assay, a decrease was observed in the level of strand breaks immediate-
ly after the race. One day post-race the levels of strand breaks increased (P<0.01),
then returned to pre-race 5 d post-race, and decreased further to below the initial
levels 19 d post-race (P<0.01). Immediately post-race there was a trend in ENDO
III and FPG-sensitive sites to decrease. The ENDO III-sensitive sites significantly
(P<0.05) increased 5 d post-race compared to 1 d post-race, but levels decreased
until 19 d (P<0.05). No significant changes were observed in the levels of FPG-
sensitive sites throughout the monitoring period [63]. 

Immune-endocrine and Inflammatory Responses, and Plasma Markers
of Muscle Damage
Briefly, as described in details elsewhere [42], there were significant (P<0.001)
increases in total leukocyte counts, MPO, PMN elastase, cortisol, CK activity,
myoglobin, IL-6, IL-10 and hs-CRP, whereas testosterone significantly (P<0.001)
decreased compared to pre-race. Except for cortisol, which decreased below pre-
race values (P<0.001), these alterations persisted 1 d post-race (P<0.001, P<0.01
for IL-10). Five days post-race CK activity, myoglobin, IL-6 and hs-CRP had
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decreased, but were still significantly (P<0.001) elevated. Nineteen days post-race
most parameters had returned to pre-race values, with the exception of MPO and
PMN elastase, which had both significantly (P<0.001) decreased below pre-race
concentrations, and myoglobin and hs-CRP, which were slightly, but significantly
higher than pre-race [42].

Associations between Endpoints of Genome Stability and Immuno-
endocrine, Inflammatory and Muscle Damage Parameters
No significant correlations were found between all these markers at all time-
points with the exception of a link between IL-6 and necrosis. Immediately post-
race, the plasma concentration of IL-6 correlated positively with the number of
necrotic cells (r=0.528; P<0.05). In addition, significant associations were
observed on the basis of a group distribution into percentiles by the IL-6 concen-
trations immediately post-race. First, the numbers of necrotic cells increased with
IL-6 across the percentiles, and the differences between all groups were P=0.012.
Second, necrosis in lymphocytes was significantly (P=0.017) higher in the subject
group with the highest IL-6 concentrations (top percentile) compared with the
lowest IL-6 values (lowest percentile).

DISCUSSION

A major finding of the present investigation is that there were no correlations
between different markers of DNA and chromosomal damage and parameters of
muscle damage and inflammation in participants of an Ironman triathlon as a pro-
totype of ultra-endurance exercise with the exception of a link between IL-6 and
necrosis. The conclusions that can be drawn from these results are several. Over-
all, the current data indicate that DNA damage is neither causally involved in the
initial systemic inflammatory response nor in the low-grade inflammation that
was sustained at least until 5 d after the Ironman race [42]. Instead, based on sev-
eral assessed relationships between leukocyte dynamics, cortisol, muscle damage
markers and cytokines [42], the pronounced but temporary systemic inflammato-
ry response was most likely induced by stressors other than DNA modulations. In
fact, consistent with previous studies in this context, factors such as the initial
ultra-structural injury of skeletal muscle [51, 74], changes in concentrations of
cortisol [53] and IL-6 [71] apparently mediated leukocyte mobilization and acti-
vation [42]. Furthermore, although the temporary increased frequency of ENDO
III-sensitive sites 5 d after the Ironman competition was found simultaneously
with the moderate prolongation of inflammatory processes, correlations between
hs-CRP and markers of muscle damage suggest that the latter phenomenon was
rather related to incomplete muscle repair [42]. 

In addition, missing links between all these markers in the present study
indicate that exercise-induced inflammatory responses vice versa do not promote
DNA damage in lymphocytes. These results support those of Mastaloudis et al.,
who demonstrated that inflammatory and muscle damage responses, indeed, do
not directly interact with the mechanisms of oxidative DNA damage [35, 36, 79].
Nevertheless, this does not rule out the possibility that inflammatory processes
can trigger oxidative stress via oxidative burst reactions of circulating neutrophils
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and an increased cytokine formation [15, 25, 29, 50, 73], which in turn might lead
to secondary (oxidative) DNA damage in immuno-competent cells [80]. In fact,
we observed correlations between markers of oxidative stress and inflammatory
parameters (unpublished results) that might point to muscular inflammatory
processes as a source of the moderate oxidative stress response 1 d after the Iron-
man triathlon. Nevertheless, we have recently demonstrated in the same study
participants that training- and acute exercise-induced responses in the antioxidant
defence system were able to counteract severe or persistent oxidative damage
post-race. Despite a temporary increase in protein oxidation and lipid peroxida-
tion markers immediately and 1 d post-race (except for oxidized LDL concentra-
tions, which actually decreased), all these markers had returned to pre-race values
5 d post-race [43]. Concomitantly, there was an increase in the plasma antioxidant
capacity following the Ironman triathlon (assessed by the trolox equivalent
antioxidant capacity- (TEAC), the ferric reducing ability of plasma- (FRAP), and
the oxygen radical absorbance capacity (ORAC)-assays) [43, 63]. These strong
antioxidant responses most likely played a significant role in counteracting sus-
tained oxidative stress post-race in the current study, while it seems that antioxi-
dant defences in the study group of Tsai et al. [80] were not sufficient to confer
protection against delayed oxidative damage to lipids and DNA due to reparative
processes of muscular tissue. Whatever the reasons for these discrepancies in the
oxidant/antioxidant balance are (differences in training-induced biochemical
adaptations, antioxidant status and/or antioxidant intake during the race, etc.), this
might be a major explanation for the inconsistencies between the findings of Tsai
et al. [80] and ours [43, 64, 62]. In fact, the observed negative correlations
between the ORAC and ENDO III-sensitive sites immediately and 1 d after the
Ironman race suggest that an enhanced plasma antioxidant capacity might have
prevented oxidative DNA damage [63]. These findings are in line with a recent
animal study [2], which demonstrated the protective role of an enhanced serum
antioxidant capacity in lymphocyte apoptosis. Taken together, whenever correla-
tions between DNA damage in immuno-competent cells and inflammation [44] or
muscle damage [80] were observed, RONS derived from inflammatory cells,
appear to be the key effectors that link inflammation with DNA damage after vig-
orous exercise. Fig. 1 is a schematic illustration of the relationships between these
stress responses to exhaustive endurance exercise. It may be argued that results
from our study fit well into this picture insofar that antioxidant mechanisms neu-
tralized an enhanced generation of RONS potentially resulting from inflammatory
processes due to the injury of skeletal muscle tissue, and consequently were able
to prevent lymphocyte DNA damage. It should also be noted that, similar to DNA
effects, muscle inflammatory processes and related oxidative stress responses
might be sustained for or appear days after muscle-damaging exercise [46].
Hence, potential links between these outcome measures might have been missed
in investigations with shorter monitoring periods [4, 40, 54, 65, 69]. Beyond, it is
important to note in this context that there is an additional difficulty in determin-
ing correlations between markers of oxidative DNA damage and other biomarkers
of oxidative stress, partly due to differences in the biological sites where oxidative
damage occurred [12]. 

The observed association between IL-6 concentration and the number of
necrotic cells immediately post-race in the present study may indicate that lym-
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phocytes partly undergo an unregulated cell death in athletes experiencing an over-
shooting inflammatory response. Based on recent research on the role of IL-6 in exer-
cise [15, 19, 52], it is questionable whether IL-6, probably released by contracting
muscles [19, 52], directly modulates necrosis in lymphocytes. In this case, plasma IL-
6 concentrations may just serve as a marker for the pronounced initial systemic
inflammatory response. However, the (patho-)physiological relevance of this associa-
tion cannot be generalised based upon the present results, since the overall number of
necrotic cells declined significantly to below pre-race values after the acute bout of
ultra-endurance exercise, and remained at these levels at all time-points investigated
[63]. Similarly, as to the decrease of necrosis, we demonstrated that levels of apopto-
sis also decreased immediately after the Ironman race, again remaining at these low
levels throughout the whole monitoring period [63]. Crucially, our data revealed no
link between apoptosis and post-race changes in lymphocyte counts. Mooren et al.
[40] reported an initial increase in apoptotic cells in the whole group of marathon run-
ners, but corresponding with the findings in the current study, lymphocyte apoptosis
declined 1 d after the race. In agreement with the decrease of DNA damage after an
ultra-marathon run [36], these findings might alternatively be explained by an over-
shooting removal of apoptotic leukocytes by phagocytic cells in order to protect tissue
from overexposure to inflammatory and immunogenic contents of dying cells [31,
40]. Based on the concept that the phagocytic clearance of apoptotic immuno-compe-
tent cells plays a critical role in the resolution of inflammation [31, 83], this could be a
further explanation for the lack of a link between inflammatory responses on the one
hand, and DNA damage and/or apoptotic cell death on the other hand. 

Finally, a reason that may also account for the lack of correlations within
most of the few studies that have addressed this issue is that the majority of these
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investigations have been conducted in trained individuals [21, 36, 37, 47, 48, 54,
60, 62]. Accumulating evidence points to adaptations in protective mechanisms
due to (endurance) training - including improved endogenous antioxidant
defences and enhanced repair mechanisms [59] - that appear to be responsible for
maintaining genome integrity in immuno-competent cells in response to extreme-
ly demanding endurance exercise. While these protective mechanisms were sug-
gested to prevent DNA damage and/or apoptosis in a number of studies [37, 40,
45, 48, 54, 60, 62], several other exercise-associated factors induce and mediate a
systemic inflammatory response [15, 53]. This indirectly further implies that
DNA damage in immuno-competent cells, if it occurs at all, might not be a major
determinant of exercise-induced inflammation.

CONCLUSION

Thus far, there is only little evidence concerning a direct relationship between DNA
damage and inflammatory responses after strenuous prolonged exercise. The most
conclusive picture that emerges from the available data is that oxidative stress seems
to be the main link between exercise-induced inflammation and DNA damage. Con-
sidering the very few studies in which markers of DNA damage were found to corre-
late with signs of inflammation or muscle damage, DNA damage in peripheral
immuno-competent cells, indeed, most likely resulted from an increased generation
of RONS due to initial systemic inflammatory responses or the delayed inflammatory
processes in response to muscle damage (Fig. 1). The lack of correlations between
these exercise-induced responses in most of the studies might also be explained by
the fact that the monitoring period was too short. Hence, particular attention should
be paid to the characteristic time-course of inflammatory and oxidative stress events
on the one hand and DNA effects on the other hand. Though obvious differences
exist in the manifestation and outcomes a comparable relationship is reported in
patho-physiological conditions including carcinogenesis, where (chronic) inflamma-
tion induces DNA damage and mutations via oxidative stress [13]. However, there
might be further mechanisms that link exercise-induced DNA modulations, inflam-
matory responses and RONS. It has been shown, that redox-sensitive signal transduc-
tion pathways including nuclear factor (NF) κB or p53 cascades are involved in
inflammation as well as “cell stress management” in response to DNA damage [24,
30]. Recent explorations of the gene expression responses to exercise have already
shed a light on hitherto unknown molecular mechanisms in exercise immunology [5,
9, 14, 61, 84, 85]. In the future, the combination of these powerful modern techniques
(transcriptomics, proteomics) with state-of-the-art biochemical biomarkers should
therefore enable researchers in this field to provide novel insights into potential fur-
ther interactions between genome stability and inflammation.
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