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Abstract

In the search for tumor-specific antigens, microbial and eukaryotic heat shock
proteins (HSP) have been identified. Intracellularly, HSPs function as molecular
chaperones supporting folding and transport of a great variety of polypeptides and
proteins under normal physiological conditions and following stress stimuli. Fur-
thermore, interferon-γ and elevated body temperature induced by exercise have
been found to increase serum levels of HSPs in humans. Extracellularly localized
or plasma membrane-bound HSPs elicit a potent anti-cancer immune response
mediated either by the adaptive or innate immune system. Following uptake of
HSP (HSP70 and gp96)-peptide complexes by antigen presenting cells (APCs)
and "cross-presentation” of HSP-chaperoned peptides on MHC class I molecules,
a CD8-specific T cell response is induced. Apart from chaperoning tumor-specific
peptides, HSPs per se provide activatory signals for the innate immune system.
Binding of peptide-free HSP70 to APCs via Toll-like receptors (TLRs) initiates the
secretion of pro-inflammatory cytokines and thus results in a broad non-specific
immunostimulation. An unusual membrane localization of Hsp70, the major heat-
inducible member of the HSP70 family, on tumor cells but not on corresponding
normal tissues was found to act as a tumor-specific recognition structure for natu-
ral killer (NK) cells. Soluble as well as cell membrane-bound HSP70 can directly
activate the cytolytic and migratory capacity of NK cells. APCs and tumor cells
actively release HSP70s in lipid vesicles with biophysical properties of exosomes.
These HSP70-presenting exosomes are thought to stimulate the adaptive and
innate immune system in vivo. Taken together, depending on their intra/extracellu-
lar localization, peptide loading status, origin and route of application, HSPs
either exert immune activation as danger signals in cancer immunity or protect
cells from lethal damage induced by exogenous stress stimuli.
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Introduction

Heat shock proteins (HSPs) are highly conserved proteins that inhabit nearly all
subcellular compartments. Following physical as well as chemical stress the syn-
thesis of HSPs is strongly induced in both, prokaryotic and eukaryotic cells in
order to protect the cells from lethal damage. Members of the HSP70 family are
involved in intracellular transport processes, support folding of nascent polypep-
tides and play key roles in antigen processing. Apart from their chaperoning func-
tions (1-3), HSPs have been found to play key roles in tumor immunity mediated
by antigen presenting cells (APC)s, T cells and natural killer (NK) cells (4). Most
immunotherapeutical approaches exploit the carrier function of HSPs for tumor-
specific antigenic peptides (5-7). Tumor-derived HSPs with a MW[r] of ~70 kDa
(Hsc70, Hsp70) and 96 kDa (gp96) have been shown to chaperone immunogene-
ic peptides (6,8) into the MHC class I antigen presenting pathway (7,9). Several
receptors including CD40 (10), the α-2 macroglobulin receptor CD91 (11-13) and
members of the Toll-like receptor family (TLR-2, TLR-4) either alone or in com-
bination with CD14, the LPS receptor (14-17), are thought to mediate binding and
uptake of HSP70- and HSP90-peptide complexes. More recently, human APCs
have been found to interact with HSPs via scavenger receptors LOX-1 and SRA-
1 (18,19). The role of the collagen and thrombospondin receptor CD36 as an
HSP70-selective receptor needs further investigation (20,21). After receptor-
mediated uptake and re-presentation of HSP-chaperoned peptides on MHC class I
molecules, a tumor-specific CD8+ T cell response is induced (7,22). The process
of an MHC class I-specific presentation of exogenous peptides is generally
termed cross-presentation. Even in the absence of tumor-derived peptides,
HSP70s have the capacity to stimulate the secretion of pro-inflammatory
cytokines including interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α
via a TLR-2/ TLR-4 and CD14-associated pathway by APCs (14). This "chaper-
okine” function of members of the HSP70 family results in a non-specific stimu-
lation of the innate immune system (23). 

An additional effect of peptide-free Hsp70 is its immunostimulatory activity
upon NK cells (24-27). By flow cytometry, membrane-bound Hsp70 was selec-
tively detected on the surface of tumors but not on corresponding normal tissues
(28). Our group showed that membrane-bound Hsp70 provides a tumor-specific
recognition structure for NK cells (24,29,30). The amount of plasma membrane-
bound Hsp70 was correlated with the sensitivity towards lysis mediated by NK
cells (31,32). Several clinically applied therapies including cytostatic drugs, γ-
irradiation, insulin sensitizers and COX-1/COX-2 inhibitors have been found to
enhance the Hsp70 membrane expression selectively on tumor cells (33-36). This
therapy-induced, increased Hsp70 surface density correlates with an increased
sensitivity of tumors towards NK cell-mediated lysis.

Cross-talk of NK cells with Hsp70 membrane-positive tumor cells appears
to be mediated via the C-type lectin receptor CD94 (37,38). Thus, the understand-
ing of physiological factors orchestrating NK cell activation might provide the
basis for innovative approaches in cellular immunotherapy. The present review
summarizes our current view on immunological effects of extracellular and mem-
brane-bound HSPs on the innate and adaptive immune system and its relevance
for exercise-initiated immunological effects. 



Cross-talk of NK cells with Hsp70

As mentioned above, our group detected a tumor-selective plasma membrane
localization of Hsp70 by selective cell surface iodination and by flow cytometry
using an Hsp70-specific monoclonal antibody directed against the C-terminal
substrate binding domain (24,28). Since this antibody also inhibits the cytolytic
activity of Hsp70-expressing tumor cells (24), we assumed that its recognition
epitope might be crucial for the interaction of NK cells with Hsp70. Peptide scan-
ning of NK cells against the complete substrate binding domain identified an 8-
mer sequence NLLGRFEL (aa454-461) as the antibody epitope. 

Based on these findings we were interested to identify the minimal Hsp70
peptide sequence with the capacity to bind to NK cells. Binding studies using dif-
ferent fluorochrome-labelled peptides all containing the core sequence NLLGR-
FEL revealed that the 14-mer Hsp70 peptide TKDNNLLGRFELSG (aa450-463)
termed TKD provides the minimal Hsp70 sequence interacting with NK cells.
Furthermore, this peptide was shown to enhance the cytolytic activity of NK cells
against Hsp70 membrane-positive tumors (39) identically to full-length Hsp70 or
the C-terminal domain (25,40). These findings are in line with observations of the
group of Colombo demonstrating that genetically engineered tumors secreting the
inducible Hsp70 displayed an increased immunogenicity against cancer in a
mouse model (41). The genetic manipulation of tumor cells did not affect the
chaperone activity of Hsp70. Tumor rejection in these mice was mediated on the
one hand via an increased amount of dendritic cells mediating a robust CD8+ T
cell response, and on the other hand by an enhanced susceptibility towards NK
cells (42). 

Since binding of Hsp70 protein as well as TKD peptide to NK cells was sat-
urable and concentration-dependent (37,38), a receptor-mediated interaction was
hypothesized. However, HSP receptors postulated for APCs were only weakly or
not expressed on NK cells. In contrast, the cell surface density of the C-type lectin
receptor CD94 was significantly up-regulated after co-incubation of NK cells
either with Hsp70 protein or TKD plus cytokines (43). Moreover, a CD94-specif-
ic antibody did not only block Hsp70 binding to NK cells but also the cytolytic
activity towards Hsp70 membrane-positive tumor cells (38). These data strongly
suggested an involvement of CD94 in the interaction of NK cells with Hsp70. 

Novel mode of NK cell-mediated tumor cell killing

The mechanism of lysis of Hsp70 membrane-positive tumor cells was character-
ized as a perforin-independent, granzyme B-mediated apoptosis (43). By affinity
chromatography a 32 kDa protein representing granzyme B could be eluted from
NK cell lysates after incubation with columns coupled either with full length
Hsp70 or Hsp70 peptide TKD. These data strongly suggest that granzyme B has a
high affinity not only for full length Hsp70 protein but also for TKD peptide
which is exposed to the extracellular milieu by tumor cells. Our findings were
supported by data of Judy Liebermann`s group who precipitated Hsp70 and
Hsp27 from granzyme B affinity columns incubated with cell lysates (44). 

From a functional point of view we demonstrated that membrane-bound
Hsp70 not only facilitates binding and uptake of granzyme B but also initiates
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apoptosis in Hsp70 membrane-positive tumors in a perforin-independent manner.
Classically, NK cell-mediated tumor cell killing involves the exocytosis of cyto-
toxic granules containing perforin and serine proteases (45). After internalization
procaspases are cleaved into their activated form by granzyme B promoting DNA
fragmentation followed by programmed cell death (46-49). The mannose 6-phos-
phate receptor was discussed to be involved in the process of endocytosis/pinocy-
tosis of both, granzyme B and perforin (50-52). Our data provide evidence for a
novel granzyme B-mediated but perforin-independent induction of apoptosis
selectively in Hsp70 membrane-positive tumor cells (Figure 1). Normal cells
lacking an Hsp70 membrane expression do not provide targets for granzyme B.
As shown in Figure 1,
contact of NK cells
with membrane-
bound Hsp70 or TKD
results in an up-regu-
lated expression of
the C-type lectin
receptor CD94 and
thus initiates the pro-
duction and secretion
of high amounts of
the apoptosis-induc-
ing enzyme granzyme
B, but not of perforin.
Released granzyme B
interacts with Hsp70
(53) which forms ion
channels in artificial
lipid bilayers (54).
The cell surface of
Hsp70 membrane-
positive tumor cells
facilitates internaliza-
tion and initiates
apoptosis in a per-
forin-independent manner. This hypothetical mechanism is supported by the find-
ing that enhanced cytolytic activity of NK cells against Hsp70 membrane-positive
tumor cells could be blocked by the Hsp70-specific monoclonal antibody. This
antibody interacts with TKD and thus prevents binding and internalization of
granzyme B into tumor cells. 

Anchorage and exosomal export of Hsp70

Although the immunological role of membrane-bound Hsp70 appears apparent,
the mechanisms of transport, membrane anchorage and export remained elusive.
Cytosolic HSPs do not contain leader peptides enabling membrane localization;
however, transport of other proteins across membranes is one of the major tasks
of members of the HSP70 family. In the cytosol HSP70s frequently co-operate

Figure 1: Granzyme B-induced apoptosis of Hsp70 membrane-
positive tumor cells. Membrane-bound Hsp70 on tumor cells
interacts with the C-type lectin receptor CD94 on the surface of
NK cells and mediates a perforin-independent release of
granzyme B initiating apoptosis in tumor cells.
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with DnaJ molecules and members of the BAG family. Cross-linking experiments
revealed a co-localization of Hsp70 with Hsp40 and the silencer of death domain
Bag-4 on the plasma membrane (35). Regarding these results it was conceivable
that Hsp70 in concert with co-chaperones might fulfill shuttle functions from
inside the cell to the plasma membrane. Functionally, Hsp70/Hsp40 and
Hsp70/Bag-4 complexes on the cell surface perform dual tasks. On the one hand
they confer protection against radiation-induced cell cycle arrest, on the other
hand they provide recognition structures for the cytolytic attack mediated by NK
cells via granzyme B. 

More recently, the group of Arispe and DeMaio demonstrated a direct inter-
action of HSP70s with the lipid phosphatidylserine in plasma membranes of
PC12 tumor cells (55). Earlier studies of the same group showed that Hsc70 has
the capacity of inducing ion conductance channels in artificial bilayers that were
regulated by the ATP/ADP content (54). Other laboratories detected HSP70 in
detergent-soluble microdomains which were found to be enriched in sphin-
golipids (54,56). By fluorescence resonance energy transfer (FRET) imaging an
association of HSP70 with TLR-4 clusters in lipid rafts could be observed upon
stimulation with lipopolysaccharides (LPS) (54,57,58). The group of Triantafilou
demonstrated that TLR-4 is targeted to the Golgi apparatus along with HSPs (58).
These results indicate that, on the one hand, HSPs support binding and transfer of
LPS via the TLR-4 complex to the cell surface. On the other hand, HSPs also
assist trafficking and targeting of LPS into the Golgi compartment. 

As well as HSP70, gp96, an ER residing HSP90 member harboring the
KDEL retention sequence, was recently found to be localized in the plasma mem-
brane of tumor cells (59). It was speculated that gp96 might reach the plasma
membrane through the ER-Golgi compartment by masking or suppressing the
ER-retention sequence. 

Several groups have reported on an active release of Hsp70 from viable tumor
cells that could be further increased by exogeneous stress (56,60,61). An alternative
vesicular pathway bypassing the ER-Golgi compartment was hypothesized for this
Hsp70 export (56). Members of the Rab GTPase family are key regulators of vesic-
ular transport pathways (for a review see refs. 62-64). Figure 2 summarizes the cur-
rent understanding of the regulatory role of Rab GTPases. Early endocytic events
are primarily regulated by Rab5 and Rab15. The former facilitates segregation of
cargo into clathrin-coated vesicles and promotes cytoskeletal motility and homotyp-
ic early endosome fusion in collaboration with other effector molecules (65). In con-
trast, Rab15 blocks the vesicular transport to early endosomes thus opposing the
Rab5 activity (66,67). Molecules reaching the early endosomes are recycled or
undergo lysosomal degradation. Recycled molecules are either sorted into Rab4-
containing microdomains within early endosomes permitting fast transfer to the
plasma membrane (68) or become transported to perinuclear recycling endosomes
where Rab11 regulates transport to the plasma membrane (69). Rab11 has also been
found to participate in exocytosis from the trans-Golgi network to the plasma mem-
brane (70). Molecules destined for degradation are delivered in a Rab7-dependent
transport step from early to late endosomes (71). Downstream of late endosomes,
Rab7 facilitates transport to lysosomes (72). Recycling of certain molecules such as
the mannose 6-phosphate receptor from late endosomes to the trans-Golgi network
is mediated by Rab9 as an additional branch of the endocytic pathway (73). 

Immunostimulatory functions of Hsp70   •   21



22 •   Immunostimulatory functions of Hsp70

In a recent study we adressed the question whether differences in the
Hsp70/Bag-4 and Hsp70/Hsp40 membrane expression pattern were associated
with a different capacity of export. Moreover, we wanted to analyse whether these

molecules were
released from plasma
membrane-positive
tumor cells in soluble
form or within mem-
brane-coated vesicles
(74). Our studies led
to the observation that
spontaneous release of
soluble Hsp70 by
tumor sublines differ-
entially expressing
Hsp70 on their cell
surface was rather
low. In contrast, deter-
gent-soluble vesicles
actively released by
tumors contained 
high amounts of
Hsp70 / Bag-4 and
Hsp70/Hsp40. Bio-
chemical and biophys-
ical characterization
identified these vesi-
cles as exosomes cor-
responding to internal
vesicles produced by
inward budding of
endosomal mem-
branes in a process
sequestering particular
lipids and proteins
(75). Comparative
Western blot analyses
of whole cell lysates
and exosomal frac-
tions derived from
Hsp70 membrane-
positive (Hsp70+) or -
negative (Hsp70-)
tumor lines revealed
that cytosolic proteins
including tubulin,
Bag-4, Hsp70, and
Hsc70 were present in

Figure 2: Schematic representation of the endocytic pathway
regulated by Rab GTPases. Endocytosed molecules are rapidly
transported to early endosomes characterized by Rab4 and
Rab5. Retrograde transport to the plasma membrane occurs as
a result of sorting into Rab4-containing microdomains within
early endosomes. On the other hand, sorting into Rab5-con-
taining microdomains results in transport to perinuclear local-
ized, recycling compartments and to lysosomes for degrada-
tion, respectively. Subsequently, recycling transport from per-
inuclear recycling endosomes to the plasma membrane is
mediated by Rab11 that also takes part in exocytosis from the
trans-Golgi network to the plasma membrane. In this context,
Rab7 facilitates transport from early to late endosomes, where-
as Rab9 mediates cycling of molecules from late endosomes to
the trans-Golgi network. Rab7 also takes part in the trafficking
of molecules to lysosomes. Potential transport of Hsp70 from
the cytosol to the plasma membrane involves EE, TGN, RE.
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both, whole cell lysates and exosomes, whereas ER-residing proteins (i.e. Grp94,
Calnexin) were absent in exosomes. A representative analysis of the protein com-
position in both celluar fractions is illustrated in Figure 3. 

Since Rab GTPases are key regulators of membrane trafficking and local-
ized to distinct membrane-bound compartments (65), we compared their distribu-
tion pattern in whole cell lysates and exosomes. As shown in Figure 3, the small
GTPase Rab4 (early
endosome to plasma
membrane) was found
to be highly enriched
in exosomes, and
small amounts of
Rab11 (trans-Golgi to
plasma membrane)
were also detectable.
In contrast, Rab7 (late
endosome to lyso-
some) and Rab9 (late
endosome to trans-
Golgi network) were
completely absent in
exosomes. From these
results we hypothe-
sized that tumor-
derived exosomes
originate predomi-
nantly from early
endosomes, minor
amounts might origi-
nate from the trans-
Golgi network. These
findings document the
intracellular transport
route of HSP70-con-
taining vesicles from
the cytosol to the
plasma membrane
(Figure 2). 

The exact local-
ization of Hsp70 was
documented by
immunogold electron-
microscopy. Hsp70
was visualized by 5
nm gold particles on
the plasma membrane
of tumor cells (Figure
4, left). Although the
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Figure 3: Comparative analysis of  the protein composition in
whole cell lysates (Lys) and exosomal (Exos) fractions derived
from Hsp70 membrane-positive (Hsp70+) and membrane-neg-
ative (Hsp70-) tumor lines, as determined by Western blot
analysis using specific antibodies directed against cytosolic
tubulin, Bag-4, Hsp70, Hsc70, Rab4, Rab7, Rab9, Rab11, and
ER-residing proteins, Grp94 and Calnexin. 
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exosomal lumen of Hsp70 membrane-positive and -negative tumor cells con-
tained comparable amounts of Hsp70, the exosomal surface revealed significant
differences. As illustrated in Figure 4 (right), Hsp70 is predominantly found in
duplicates on the surface of Hsp70-positive exosomes. In contrast, exosomes
derived from Hsp70 membrane-negative tumor cells completely lack Hsp70 on
their surface (Figure 4, right). Taken together, our results indicate that despite
identical amounts of cytosolic proteins in the exosomal lumen, the surface of exo-
somes reflected that of the tumor cell membranes from which they originated.

Furthermore, Hsp70 surface-positive exosomes but not their surface-negative
counterparts have the capacity to stimulate the cytolytic capacity of NK cells in a
similar manner like soluble full length Hsp70 protein or TKD peptide. These data
provide an explanation how Hsp70 reactivity in NK cells is induced by tumor-
derived exosomes in vivo.

Role of HSPs in tumor immunity

Homologous members of distinct HSP families are present in nearly all cellular
compartments including cytosol, nucleus, mitochondria, lysosomes, endosomes,
endoplasmic reticulum, and on intracellular and plasma membranes (1,28,76-79).
Moreover, an association of membrane-bound HSP70 family members in deter-
gent-resistant caveoli (80) and in lipid rafts has been described (56). HSPs have
been detected in body fluids of cancer patients and in supernatants of tissue cul-
tures (60,81). Also exercise has been found to induce the release of Hsp70 into the
serum of humans (82). The extracellular localization of HSPs with molecular
weights of 60, 70, and 90 kDa is frequently associated with the appearance of
HSP-specific antibodies in the serum. Apart from the induction of a humoral
immune response, HSPs also have the capacity to elicit a cellular immune

Figure 4: Immunoelectron microscopic view of the Hsp70 localization on the plasma mem-
brane of Hsp70 membrane-positive tumor cells (left) and on the surface of exosomes
derived from Hsp70+ and Hsp70- tumor cells (right; scale bar, 50 nm). Localization of
Hsp70 was visualized by using an anti-Hsp70 monoclonal antibody coupled to 5 nm gold
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response. Depending on their localization and peptide-loading status a variety of
different immunological functions have been established (83). On the one hand,
elevated cytosolic and membrane-bound HSP levels were associated with protec-
tion against a second lethal stress stimulus as a result of non-lethal stress (35,84).
On the other hand, membrane-bound and extracellularly localized HSPs also pro-
vide danger signals for the immune system (84). It was hypothesized that soluble
HSPs might either originate from necrotic or apoptotic cell death, or be recruited
from viable cells with the capacity to actively release HSPs in lipid vesicles from
the endosomal compartment (60,85). In any case tumor-derived HSPs either un-
loaded or peptide-loaded have attracted significant attention from an immunolog-
ical point of view. The group of Srivastava was among the first who reported their
roles as adjuvant-free tumor vaccines (9,86). Injection of mice with HSP70 (the
stress-inducible Hsp70 and the cognate Hsc70) or HSP90 (the glucose-related
protein gp96)-peptide complexes purified from the cytosol or endoplasmic reticu-
lum (ER) of tumors generated protective immunity against subsequent tumor
challenge in mice. Apart from chaperoning tumor-derived peptides, the ER-resid-
ing glycoprotein gp96 is known to interact with cholesterol esterase, fibrillin, thy-
roglobin, MHC class II peptides and mediates proper folding of the immunoglob-
ulin (Ig) light chain (79,87). The cytosolic stress proteins, Hsc70 (73kDa cognate
Hsc70) and Hsp70 (72kDa inducible Hsp70), preferentially bind early folding
products including nascent chains and support transport of other proteins across
membranes (1,2).

Adoptive transfer experiments of different effector cell populations con-
vincingly demonstrated an involvement of CD8+ cytotoxic T lymphocytes
(CTL) and of professional APCs in protecting mice from tumors from which
the HSP preparations were derived (22,88,89). HSP90 and HSP70 peptide
preparations of corresponding normal tissues failed to protect mice against sub-
sequent tumor challenge. In general, "cross-presentation” describes the transfer
of exogenous HSP-chaperoned peptides into the MHC class I pathway through
an endosomal pathway stimulating a CD8+ T cell response (9,90,91). With the
identification of the molecular nature of HSP-specific receptors the mechanism
of HSP-peptide complex uptake by APCs became clearer (20). Binding studies
revealed that receptor-mediated uptake of HSP-peptide complexes into APCs
was specific, saturable, and concentration-dependent (92-94). These findings
provide an explanation of why small amounts of HSP-peptide complexes were
highly efficient in immunizing against tumors. 

In an effort to improve the efficacy of HSP peptide vaccines several labora-
tories designed HSP fusion constructs with bacterial antigens. The group of
Huang took advantage of superantigens (SAg SEA) assisting HSPs in eliciting a
potent anti-tumor immune response (95). HSP70-transduced tumor cells bearing
SEA transmembrane fusion proteins were used successfully as a modified vaccine
prolonging survival of B6 melanoma bearing mice. The immune response against
malignant melanoma was mediated through CTLs and NK cells as demonstrated
by an augmented cell proliferation of both effector cell types in vivo.

Another approach exploits HSP fusion constructs consisting of the viral E7
protein of human papilloma virus type 16 and Bacillus Calmette Guerin (BCG)
mycobacterial Hsp65 as a vaccine (96). Mice immunized with these constructs
developed a strong type 1 immune response mediating tumor regression and con-
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ferring resistance to tumor challenge with the cervical cancer cell line TC-1.
Again, an important role for CD8+ T lymphocytes was determined (97). Previous
studies using mycobacterial Hsp65 also resulted in loss of tumorigenicity and
conferred protection against murine reticulum cell sarcoma mediated through
both, cytotoxic CD4+ and CD8+ T cells (98).

A variety of HSPs were found on the plasma membrane of tumor cell lines
as determined by selective cell surface protein profiling (77). These findings were
confirmed by a broad screening programme of human tumor biopsies in our labo-
ratory. Phenotypic analyses revealed that Hsp70, the major stress-inducible mem-
ber of the HSP70 group, is frequently found on the plasma membrane of colon,
lung, pancreas, mammary, head and neck and metastases derived thereof
(24,28,99). Also bone marrow samples of patients suffering from acute and
chronic myeloid leukemia are frequently Hsp70 membrane-positive (100). Inter-
estingly, the corresponding normal tissues were always found to be Hsp70 mem-
brane-negative. These Hsp70 membrane-positive tumors were efficiently elimi-
nated by NK cells that had been pre-stimulated with low dose IL-2 plus Hsp70
peptide TKD (25). Adoptive transfer of these TKD-stimulated NK cells in tumor-
bearing mice revealed identical results in vivo (42,101,102). It is known that IL-2-
activated NK cells are able to induce regression of established lung and liver
tumors (103-106). Our group identified a specific migratory capacity of NK cells
towards Hsp70-positive tumor cells and supernatants derived thereof. The same
effect could be observed for the Hsp70 peptide TKD (107). From these results we
speculated that killing of Hsp70-positive tumors in vivo might be related to an
enhanced migratory capacity of pre-activated NK cells. 

Therefore, our findings have further clinical implications with respect to the
development of an NK cell-based cellular immunotherapy. In a recently published
clinical phase I trial the use of ex vivo TKD/low-dose IL-2-activated autologous
NK cells has been tested with regard to tolerability, feasibility, and safety in
patients with multiple metastasized colon and lung carcinomas (108). As demon-
strated in this study, re-infusion of TKD-activated autologous NK cells is feasible
and safe. Repeated injection cycles revealed clinical responses even in these
heavily pre-treated, therapy-refractory tumor diseases.

Potential immunological role of Hsp70 in exercise

It is very well known that endurance exercise results in an up-regulated Hsp70
expression in healthy humans (82,109-112). Apart from the intracellular up-regu-
lation, soluble Hsp70 was significantly increased in the plasma/serum (109) and
in the brain (113) of endurance athletes. However, the biological significance of
this release has not yet been identified. Previous studies indicate that hepatos-
planchnic tissues (114) and glial cells (61,115) release Hsp70 by an exocytotic
mechanism which is independent of cell necrosis. As mentioned above, extracel-
lular HSPs play key roles in initiating immunoregulatory functions. Therefore,
one might speculate that elevated extracellular Hsp70 levels after exercise might
act as beneficial danger signals protecting against bacterial inflammation via
cytokine secretion (23,116). On the other hand it is not clear as to whether Hsp70
might be exposed on the cell surface of muscle tissues following exercise and
thus might provide a target structure for NK cells (30). This hypothesis might be



supported by the finding that intensive exercise also results in an increase of pro-
and anti-inflammatory cytokines (117). Future kinetic studies are required to
determine as to whether exercise-induced Hsp70 release in association with
cytokines positively or negatively affects the immune system of athletes.

Concluding remarks

In summary, recent observations imply a crucial role of extracellularly localized
and membrane-bound HSPs in inducing an efficient cellular immune response
against cancer. Apart from their cross-priming activity, even in the absence of
chaperoned tumor-peptides members of the HSP70 family are considered as
potent activators of the innate immune response. Tumor-derived exosomes as well
as soluble Hsp70 proteins are involved in the activation of an anti-tumor immune
response mediated by NK cells. These findings might have further implications to
broaden the understanding of an exercise-induced Hsp70 release in athletes.   
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