
Introduction

Plasma interleukin (IL)-6 levels increase up to 100 fold in response to exercise
(42) (12;39-41;50;59). It has recently been shown that IL-6 is released from con-
tracting skeletal muscles during dynamic knee extensor exercise and that this
release may be responsible for the total increase in the systemic concentration
(61). Studies in rats (26) (30) and humans (24;28;57;61) (10;15;45) demonstrate
elevated levels of IL-6 mRNA in contracting skeletal muscle. Evidence exists that
it is the muscle fibers per se, which are the source of muscle-derived IL-6
(14;16;44).

When muscle glycogen was depleted prior to exercise in one leg, this leg
released IL-6 one hour prior the non-glycogen depleted leg (61). Furthermore, the
transcription rate of the IL-6 gene in muscle nuclei (28), and in total muscle IL-6
mRNA increased when exercising with lower muscle glycogen compared with a
trial where the same subjects exercised with normal muscle glycogen content
(10;28;61), therefore low muscle glycogen has been suggested as a signal for IL-6
release from contracting muscles. This statement has been strengthened by a
study showing an inverse correlation between high IL-6 release during exercise
and muscle glycogen content at the end of exercise (21) and by the finding that
training reduces the contraction-induced IL-6 mRNA expression in skeletal mus-
cle (17).

Regular exercise offers protection against all cause mortality, primarily by
protection against atherosclerosis and type 2-diabetes (3). In addition, physical
training is effective in the treatment of patients with ischemic heart disease (25),
hypertension (46) and hyperlipidemia (31).

Over the past decade, there has been much focus on the role of inflamma-
tion in the pathogenesis of atherosclerosis and its complications. Whereas most
clinicians previously regarded atheroma as a bland lesion, the current notion that
inflammation and immune response contribute to atherogenesis has created
increased interest (32).

During ageing circulating levels of a number of cytokines increase. Thus,
increased plasma levels of TNFα (6;7;11;36), IL-6, IL-1ra (11) and sTNFR
(5;6;8) have been demonstrated. In addition ageing is also associated with
increased levels of acute phase proteins such as C reactive protein (CRP) and
Serum Amyloid A (SSA)(2). Elevated levels of circulating IL-6 and TNFα have
been associated with several disorders. Thus, increased levels of TNFα and IL-6
have been observed in obese individuals, in smokers and in non-insulin depend-
ent diabetes mellitus (68) and levels of IL-6 have been shown to predict all-cause
mortality as well as cardiovascular mortality (20;69). Furthermore, plasma con-
centrations of IL-6 and TNFα have been shown to predict the risk of myocardial
infarction in several studies (52;53;64), and recently it was shown that the CRP
level is a stronger predictor of cardiovascular events than the LDL cholesterol
level and that CRP adds prognostic information to that conveyed by the Framing-
ham risk score (54). It has been proposed that IL-6 is the mediator that links the
acute phase response to visceral obesity, insulin resistance and atherosclerosis
(72). High levels of IL-6 in patients with metabolic syndrome may be explained
by the fact that IL-6 is produced in adipose tissue (18;35). Adipose tissue also
produces and releases TNFα (65). However, in contrast to IL-6, the available data
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Abstract

Contracting skeletal muscles produce and release the cytokine interleukin (IL)-6
and this release is augmented by the presence of low muscle glycogen. Since mus-
cle metabolism in elderly subjects relies on glycogen more than younger subjects,
it is possible that aging is associated with an altered production of muscle-
derived IL-6 during exercise. To test the relation between aging and muscle-
derived IL-6, seven healthy elderly males, mean age 70 ± 1 (SEM) yr and six
healthy young males, mean age 26 ± 2 (SEM) yr performed three hours of dynam-
ic knee-extensor exercise at 50% of maximal work load (Wmax). IL-6 mRNA and
glycogen in muscles were analysed and the IL-6 release were estimated before,
during and after the exercise. Although the absolute work load in the elderly was
less than half of that in the young, 41.1 ± 3.1 W and 92.5 ± 4.0 W, respectively, the
muscle glycogen utilization after three hours of exercise did not differ between
groups, 238.7 ± 52.4 and 245.2 ± 74.0 mmol/kg muscle in elderly and young,
respectively. This could explain that the IL-6 release and the IL-6 mRNA amplifi-
cation increased during exercise with no difference between groups, two-way
ANOVA-P = 0.50 and 0.45, respectively.
In conclusion, elderly healthy people maintain the capacity to produce and
release IL-6 in response to dynamic exercise, with no difference compared to
young individuals furthermore, glycogen utilization expressed in changes of
glycogen related to muscle mass was equal in elderly and young subject at 50 %
of Wmax.
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subjects. Therefore, in this study we chose to investigate the two groups when
performing exercise at same relative percentage of maximal workload.

The subjects performed 3 h of dynamic two-legged knee extensor exercise
at 50 % of maximal workload (Wmax) on a modified Krogh cycle ergometer as
previously described (1). At least one week before the trial a two-legged knee
extensor exercise test was performed to determine Wmax. Resistance load was
increased every two minutes until a cadence of 60 extensions/min could no longer
be maintained. The highest workload that could be maintained for two minutes
was set as the maximum workload. After 1/2 hour rest the subjects performed 2 h
of two-legged knee extensor exercise at 50% of Wmax to familiarise themselves
with the apparatus. 

The evening before the experiment, all subjects were provided with a fixed
diet to ensure that there was no difference in diet between the two groups. The
subjects reported to the laboratory the following day after an overnight fast.
Catheters were placed in the femoral vein and artery of one leg under local anaes-
thesia (lidocaine 20 mg/ml). Blood samples were drawn into pre-cooled tubes
containing EDTA at 0, 30, 60, 90, 120 and 180 min of exercise and at 60 and 120
min post-exercise. Blood samples were immediately spun at 4°C and plasma was
isolated and stored at -80°C until analyses were performed. Blood flow in the
femoral artery at each time point was measured with Doppler ultrasound tech-
nique as described in details previously (51). In addition, muscle biopsies were
obtained from the vastus lateralis at 0, 30, 90 and 180 min of exercise and at 120
min post-exercise using the percutaneous needle biopsy technique with suction.
Biopsy samples were obtained from the left leg (0 and 90 min during exercise and
120 min post-exercise) and from the right leg (30 and 180 min). Muscles were
cleaned of connective tissue and blood, and quickly frozen in liquid nitrogen for
later analysis. 

IL-6 measurements: Commercially available enzyme-linked immunosor-
bent assay (ELISA) kits were used (Quantikine HS, R&D systems, Minneapolis,
MN, USA) to measure plasma IL-6. According to R&D systems the detection
limit is less than 0.094 pg/ml. All samples were run in duplicates and mean values
were used. Net IL-6 release was calculated according to Fick’s principle (70) by
multiplying the arterial-femoral venous (a-fv) difference by blood flow.

Measurements of catecholamines: High Performance Liquid radioim-
munoassay Chromatography described in detail elsewhere (4), was used to deter-
mine systemic concentrations of adrenaline and noradrenaline.

Measurements of lactate: Plasma lactate were measured in arterial and
venous blood using an automatic analyser (Cobas Fara, Roche, France) and
release was calculated according to Fick’s principle.

IL-6 mRNA analyses: Total RNA was isolated from 9-86 mg of muscle tis-
sue by a modified guanidinium thiocyanate phenol-chloroform extraction method
adapted from Chomczynski and Sacchi (9) as previously described (48). Final
pellets were dissolved in 0.1 mM EDTA (2 µl/mg wet weight). Reverse transcrip-
tion reactions were carried out on 11 µl sample using the Superscript II Rnase H-
system (Gibco-BRL) in a reaction volume of 20 µl. All samples were diluted to a
final volume of 150-200 µl with nuclease free water. 

β-actin mRNA and IL-6 mRNA levels were determined by real-time PCR,
which determines the amount of cDNA amplification after each PCR cycle. With
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suggests that TNFα plays a mechanistic role in insulin resistance. Thus, TNF-α
down-regulates GLUT-4 and inhibits insulin receptor activity (23). Since TNF-α
can trigger IL-6 release, one theory holds that adipose tissue derived TNF-α actu-
ally is the „driver“ behind the metabolic syndrome and that TNF-α rather than IL-
6 should be placed in the center as the cytokine that induces insulin resistance and
thereby initiates diabetes type 2 and atherosclerosis.

It is possible that exercise mediates its beneficial health effects by inducing
an anti-inflammatory environment. The cytokines, which are present in the circu-
lation following exercise is IL-6 and classical anti-inflammatory cytokines such
as IL-10 and IL-1ra (39;43).

There has been much debate on how to classify the cytokine IL-6. Tilg et al
suggested that IL-6 should be classified as an anti-inflammatory cytokine (63).

The finding that rhIL-6 infusion enhances levels of IL-10 and IL-1ra (60)
and inhibits endotoxin-induced TNFα production lends support to the idea that
IL-6 has anti-inflammatory effects (56).

The fact that exercise alone inhibited endotoxin-induced TNFα increase in
the circulation (56) and that TNF-α overexpression returned to normal levels after
exercise in the TNF-α receptor knockout model (27) indicates that exercise medi-
ates anti-inflammation.

Given the biological profile of IL-6, it would be important to know whether
the aging skeletal muscle is able to produce IL-6. The purpose of the present
study, therefore, was to test whether elderly subjects maintain their capability of
producing and releasing IL-6, and whether this could be explained by an age
related change in muscle glycogen metabolism.

Matherials and Methods

Subjects: Seven healthy
elderly males and six healthy
young males (whose charac-
teristics are shown in table 1.
participated in the study. All
subjects were recruited
through earlier studies in our
department. Medical history,
physical examination, clinical
chemistry profile, complete
blood count, cell differential
count and CRP, and electro-
cardiogram demonstrated that
the subjects were completely healthy. The study was in accordance with the
Helsinki II Declaration and approved by the regional research ethical committee
(No. 01-216/00). All subjects gave their written consent before participation.

Studies of the effect of aging on metabolism or immune function during
exercise are complicated by large between-group differences in VO2max, which
raises the question of how to best standardize the exercise intensity. In the present
study, an exercise model was chosen which was not dependent upon the cardio-
respiratory capacity and therefore useful in studies including elderly untrained
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Table 1. Subject characteristic

Young (n = 6) Elderly (n = 7)

Age, yr 25.7 ± 1.7 69.7 ± 1.2*
Bodyweight (kg) 78.1 ± 3.2 78.9 ± 2.6
BMI, kg m-2 22.3 ± 0.7 24.1 ± 0.9
QF, kg 5.1 ± 0.2 3.7 ± 0.1*
Workload, W 92.5 ± 4.0 41.1 ± 3.1*

Values are shown as mean ± SEM
QF: M. quadriceps femoris in both legs (MRI)
*, P ≤ 0.05, vs. young



the area of QF in each slide by the distance between the slides and summed for all
images and the muscle mass was calculated assuming a muscle density of 1.04
kg/l (22).

Statistical methods: SYSTAT version 8.0 (SPSS Inc., Chicago, USA) was
used as software. Plasma IL-6 and IL-6 mRNA values were not normally distrib-
uted and were therefore square root transformed. Absolute changes in response to
exercise were evaluated by analysis of variance (ANOVA) for repeated measure-
ments (model parameter = time + age + time x age). If a significant (time x age)
was found, a two-sample t test (Bonferoni-adjusted) for independent groups was
used to detect age-related differences in absolute changes from baseline levels. If
only time turned out to be significant, age group was pooled and a paired t-test
(Bonferoni-adjusted) was performed to detect changes from baseline levels. A P-
value < 0.05 was considered as significant.

Results:

Blood flow: The blood flow increased in both
groups, being more pronounced in the young
subjects (Two-way ANOVA for repeated
measurements, P<0.001)(Fig. 1).
Plasma IL-6: The a-v difference for IL-6
increased in the end of exercise in both
groups (P < 0.05) (Fig. 2A). When the net
IL-6 release was calculated there was a grad-
ual increase during exercise (P< 0.05). How-
ever, over time there was no difference
between the groups (Fig. 2B). Furthermore,
when the net IL-6 release was related to the
QF muscle mass (MRI) there was no differ-
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real-time PCR a probe, in addition to the forward and reverse primer, is used. The
probe, located between the primers, has a fluorescent dye attached to the end,
which is split off during amplification by a 5’ nuclease. The splitting of the probe
results in emission of light from the dye, which can be measured by the machine,
hereby giving a measure of the amount of amplification of cDNA that has been
performed during each PCR cycle.

The IL-6 primers and probe sequences used were designed by Starkie et al
(57). An 81-bp fragment was amplified using the IL-6 forward primer: 5’-GGTA-
CATCCTCGACGGCATCT-3’, and the IL-6 reverse primer: 5’-GTGC-
CTCTTTGCTGCTTTCAC-3’. The flourescent IL-6 probe: 5’-FAM-TGT-
TACTCTTGTTACATGTCTCCTTTCTCAGGGCT-TAMRA-3’ was included in
the PCR reaction. We used the pre-developed assay reagents from Applied
Biosystems for β-actin mRNA determination. β-actin was measured as a refer-
ence gene in a multiplex reaction with IL-6. The use of different dyes with differ-
ent wave length emission patterns attached to the end of the probes gives the
opportunity to measure two genes of interest in the same reaction well. The pres-
ence of more than one primer and probe set did not affect the amplification of nei-
ther IL-6 nor β-actin. All PCR-reagents were obtained from Applied Biosystems.
A reaction volume of 100 µl was made up for each sample with 1x MasterMix,
900 nm IL-6 forward primer, 300 nm reverse primer, 100 nm IL-6 probe, 1x B-
actin mix (primers and probe), 10 to 15 µl of sample and made up to a final vol-
ume of 100 µl with water. Each sample was run in triplicates in a reaction volume
of 25 µl.

Muscle glycogen content: Frozen muscle samples (10-20) mg were freeze
dried, dissected free of connective tissue, weighed and hydrolysed in 1 M HCL.
Glycogen concentrations were determined by standard enzymatic technique with
fluorimetric detection (38). The energy expenditure from muscle glycogen uti-
lization was calculated as:
Total energy expenditure from glycogen utilization = 

Postglycogen – Preglycogen (g/kgmuscle) x Muscle mass (kg)(MRI)) x 16 KJ/g x 180 g/mol

Muscle glycogen utilization and effect of work load: To investigate whether
elderly were more dependent on muscle glycogen as an energy source, the energy
from glycogen oxidation compared with total mechanical work performed was
calculated by dividing the energy from muscle glycogen utilization after 3 h of
exercise with the total mechanical work performed during 3 h of exercise.

Muscle mass estimation: The volume of m. quadriceps femoris (QF) was
measured by Magnetic Resonance Imaging (MRI) (Siemens 1.5 tesla magnet).
Twenty-eight T1 weighed scans (TR = 900 ms) were acquired with a slide thick-
ness of 3 mm and an interslice thickness of 12 mm. View field was 400 x 400 mm
with a resolution of 256 x 256 (pixel size = 1.56 x 1.56 mm). Scicon Images for
Windows (Scion Corporation, Frederick, Maryland, USA) were used to analyse
MRI images. For quantification the first image used was at mid patella and the
last image just above trochanter major. The use of trochanter major as an end-
mark for QF does, however, not always include the full length of m. rectus
femoris, but due to the increased noisiness of the images in this area this proce-
dure gave the best reproducibility. Muscle volume was calculated by multiplying
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Figure 1: Blood flow in femoral artery
in 7 elderly subjects (◊) and 6 young
controls (�) measured before, during
and after (+60 and +120) 3 h of
dynamic knee-extensor exercise. Data
are presented as mean and S.E.M.
*, P < 0.05 vs. pre-ex 
†, P < 0.05 vs. elderly subjects

p
g

/m
in

Figure 2: IL-6 data for 7 elderly sub-
jects (◊) and 6 young controls (�)
before, during and after (+60 and
+120) 3 h of two-legged dynamic
exercise. Data are presented as median
and quartiles. A, IL-6 a-vf differences
for elderly and young subjects. B, net
release of IL-6 from elderly and young
subjects (Fick’s principle: blood flow
x a-fv differences).
*, P < 0.05 vs. pre-ex (groups pooled).
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Catecholamines: Adrenaline and noradrenaline increased (P<0.01) as expected
during exercise, with no difference between the two age groups, although there
was a tendency to higher levels in the young subjects after three hours of exercise
(Table 2).

Discussion

The present study is the first to determine the effect of aging on IL-6 release
from contracting skeletal muscles. Although the absolute work load and the mus-

cle mass in the elderly was less than that in
the young controls, the net IL-6 release and
the IL-6 mRNA in muscle did not differ
between groups. These data suggest that eld-
erly subjects maintain a capability to pro-
duce and release muscle-derived IL-6 and
that IL-6 release is not related to absolute
workload, muscle mass or age. 

Previous findings have demonstrated a
relationship between muscle-derived IL-6
release and muscle glycogen concentration
(15;21;28;37;61). In the present study the
decline in muscle glycogen content during
exercise did not differ between groups but
the glycogen breakdown per mechanically
energy performed after three hours of exer-
cise was significantly higher in the elderly,
which demonstrates that the elderly were
more dependent on mobilization of glycogen
as an energy source during exercise. This

finding is likely to be related to a lower training degree of old versus young sub-
jects. Thus, it has been demonstrated that during exercise untrained muscles
metabolise more carbohydrate relative to fat compared with trained muscles (55).
The calculations in relation to energy turnover from glycogen use were based on
the assumption that all glycogen utilization was oxidised. Although, in the present
study, we did not measure muscle lactate accumulation, the fact that the peak lac-
tate release was 1.06 mmol/min and 0.35 mmol/min for elderly versus young,
respectively, and the fact that this release peaked after 30 min in the elderly after
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ence among groups (data not shown).
Muscle IL-6 mRNA: The IL-6 mRNA level in
the muscle increased during exercise
(P<0.05). However, there appeared to be
large inter individual variations and the dif-
ference between groups did not reach statisti-
cal significance (P = 0.2) (Fig. 3).
Muscle Glycogen Content: The muscle glyco-
gen content decreased during exercise with no
difference between groups, either before or
during the exercise (Fig. 4A). After 3 h of
exercise the glycogen utilization was 238.7 ±
52.4 and 245.2 ± 74.0 mmol/kg muscle in eld-
erly and young, respectively. When energy
from glycogen utilization was calculated, there
was no difference between groups (Fig. 4B).
Effect of mechanical work: When the total
energy from muscle glycogen breakdown
was related to the total mechanical energy
performed, it was demonstrated that the eld-
erly had a higher (P <0.05) glycogen break-
down, indicating that the elderly individuals
may rely more on glycogen breakdown than
the young subjects (Fig. 4C). 
Lactate release: There was a small but sig-
nificant increase in lactate release over time
(P = 0.002) with no difference between
groups. After 30 min of exercise the release
peaked in the elderly group to 1.06 ± 0.21
mmol/min and in the young group after 120
min of exercise to 0.35 ± 0.27, (Fig. 5).
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Figure 3: IL-6 mRNA in 7 elderly sub-
jects (open) and 6 young controls
(solid) before, during and after (+120)
3 h of two-legged dynamic exercise
measured by real time PCR. Data are
presented as median and quartiles.
*, P < 0.05 vs. pre-ex (groups pooled)
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Figure 4: Muscle glycogen data in 7 eld-
erly and 6 young males. Glycogen was
measured in the quadriceps muscles.
Data are presented as mean and S.E.M.
A, muscle glycogen content (mmol/kg)
in the vastus lateralis from 7 elderly
(open bars) and 6 young (solid bars)
before, during and after (+120) 3 h of
two-legged dynamic exercise. B, energy
from total quadriceps muscle glycogen
utilization in 7 elderly (◊) and 6 young
(�) males during and after (+120) 3 h of
two legged dynamic exercise. C, Rela-
tion between energy from total glycogen
utilization in the quadriceps muscle and
energy used to mechanical work per-
formed after 3 h of two-legged dynamic
exercise in 7 elderly and 6 young males.
*, P < 0.05 vs. pre-ex (groups pooled)
†, P < 0.05 vs. young controls

Table 2. Catecholamines measured in arterial blood.
Young (n = 6) Elderly (n =7)

Pre 180 min + 120 min Pre 180 min + 120 min

Adrenaline 0.22 ± 0.05 5.16 ± 1.93 1.01 ± 0.29 0.33 ± 0.08 1.73 ± 0.61 0.35 ± 0.05
(nmol/l)

Noradrenaline 0.97 ± 0.13 7.95 ± 1.20 1.35 ± 0.17 1.56 ± 0.20 7.27 ± 1.35 2.46 ± 0.32
(nmol/l) 

Values are mean ± SEM
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Figure 5: Lactate release before, dur-
ing and after 3 h of two-legged
dynamic exercise in 7 elderly humans
(◊) and 6 young controls (�), (Fick’s
principle: blood flow x a-fv differ-
ences). Data are presented as means
and S.E.M.
*, P < 0.05 vs. pre-ex (groups pooled)



mission of the European Communities, specific RTD programme „Quality of Life
and Management of Living Resources“, QLRT-2000-00417, PENAM. It does not
necessarily reflect its views and in no way anticipates the Commission’s future
policy in this area.
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which it declined, makes this assumption valid since it indicates that lactate pro-
duction was negligible and unlikely to contribute to anaerobic glycogenolysis
and/or affect IL-6 production.

In this study, the groups differed with regard to both maximal workload per-
formance as well as muscle mass. However, the difference between groups with
regard to maximal workload performance was more pronounced than the differ-
ence in muscle mass. This may be explained by an overestimation of muscle mass
in the elderly group, as a result of a higher water and fat content in aging muscles
(19;49;66). 

It has been debated whether catecholamines stimulate IL-6 production dur-
ing exercise (62).

However, the exercise-induced increase in plasma IL-6 could not be mim-
icked by epinephrine infusion. Although epinephrine induced a small increase in
IL-6 and may, therefore, partly influence the plasma levels of IL-6 during exer-
cise, it could not account for the massive increase in IL-6 during exercise (58). 

As skeletal muscle is the major source of IL-6 during exercise (61) it is not
likely that adrenaline is a major stimulator of muscle-IL-6, although it stimulates
adipose tissue IL-6 production (29).

In the present study there was no significant difference between the two age
groups with regard to the neither the catecholamine responses nor the IL-6
release. Therefore, the present study does not really shed much light on the role of
epinephrine in the regulation of muscle-IL-6.

IL-6 has been placed in the center of modern internal medicine as the link
between inflammation, obesity, stress and coronary heart disease (72). Given the
finding that during exercise skeletal muscles produce and release large amounts
of IL-6 into the systemic circulation and given the many beneficial effects of
physical exercise on health, it is possible that during moderate regular exercise,
IL-6 may mediate some of these effects. Recently, it was demonstrated that IL-6
knockout mice develop late onset obesity and impaired glucose tolerance (71).
Furthermore, mice bearing IL-6-producing tumours lose weight (34) and rhIL-6
infusion to healthy young and elderly people as well as people with type 2 dia-
betes induces lipolysis and fat oxidation (47;67).

We therefore suggest that muscle-derived IL-6 may work in a hormone like
fashion mediating exercise-induced lipolysis and anti-inflammation (13;33;43).
These findings further classify skeletal muscle as an endocrine organ.

In conclusion, the present study demonstrates that aging skeletal muscle
maintain its endocrine functions and specifically demonstrates that healthy elder-
ly subjects maintain a normal capability of producing and releasing IL-6 from
contracting muscle compared to young subjects. 
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